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Research Article

A new genus of terraranas (Anura: Brachycephaloidea) from
northern South America, with a systematic review of Tachiramantis

SANDY ARROYO1 , MARIANE TARGINO2,3 , LUIS ALBERTO RUEDA-SOLANO4 ,
JUAN M. DAZA5 & TARAN GRANT2

1Laboratorio de Anfibios, Grupo Clad�ıstica Profunda y Biogeograf�ıa Hist�orica, Instituto de Ciencias Naturales, Universidad
Nacional de Colombia, Bogot�a, Colombia
2Laborat�orio de Anf�ıbios, Departamento de Zoologia, Instituto de Biociências, Universidade de S~ao Paulo, S~ao Paulo, Brazil
3Departamento de Vertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Brazil
4Grupo de Investigaci�on en Biodiversidad y Ecolog�ıa Aplicada (GIBEA), Facultad de Ciencias B�asicas, Universidad del Magdalena,
Santa Marta, Colombia
5Grupo Herpetol�ogico de Antioquia, Instituto de Biolog�ıa, Universidad de Antioquia, Medell�ın, Colombia

(Received 24 April 2022; accepted 8 September 2022)

Since the systematics of Terrarana frogs was overhauled in 2008, five new genera have been named, including
Tachiramantis from the Venezuelan Coastal Range and adjacent parts of the Cordillera Oriental of Colombia and the
Sierra de Perij�a along the Venezuela–Colombia border. The discovery of Tachiramantis raises questions about the
relationships of several species of Pristimantis in the nearby Sierra Nevada de Santa Marta previously hypothesized to
be closely related to species now referred to Tachiramantis. To test the monophyly of Tachiramantis and the
relationships among its species, we generated DNA sequences for 42 individuals, and, given the variable placement of
Tachiramantis in previous studies, analysed them with DNA sequences from GenBank representing 25 genera of
terraranas. In total, the final matrix included DNA sequences from 414 terminals, which we analysed using tree-
alignment under the parsimony optimality criterion. To identify morphological synapomorphies and diagnostic
characters, we also examined cranial osteology and axial skeleton morphology. Our analyses corroborated both the
placement of Tachiramantis far from Pristimantis in Craugastoridae and the monophyly of Tachiramantis. We also
found that six species currently referred to Pristimantis, all endemic to the Sierra Nevada de Santa Marta, comprise the
sister clade of Tachiramantis. This highly endemic clade is both well-supported by molecular data and diagnosed from
Tachiramantis by seven morphological synapomorphies, leading us to recognize it as a new genus.

http://zoobank.org/urn:lsid:zoobank.org:act:0036039F-F400-4CD4-A6AD-D3DD2B34BA4E
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Introduction
The terrestrially breeding frogs of the clade
Brachycephaloidea G€unther, 1858 (terraranas) comprise
1,225 species distributed from the south-western
USA through Mexico and the West Indies south to
northern Argentina (Frost, 2022). The monophyly of
Brachycephaloidea is corroborated by both DNA sequen-
ces (e.g., Frost et al., 2006; Hedges et al., 2008; Heinicke
et al., 2009; Padial et al., 2014; Pyron & Wiens, 2011)
and seven putative morphological synapomorphies in the

urogenital and vascular systems (Taboada et al., 2013).
Also, phenotypic characters, including direct developmen-
tal and T-shaped terminal phalanges (Heinicke et al.,
2009; Lynch, 1971) help diagnose Brachycephaloidea.
In the nearly 15 years since Hedges et al. (2008) over-

hauled the taxonomy of terraranas, molecular phylogen-
etic analyses have continued to hone our understanding
of the radiation of these frogs (e.g., Hedges et al., 2008;
Heinicke et al., 2009; Padial et al., 2014; Pyron &
Wiens, 2011). The improved knowledge of phylogeny
has been reflected in taxonomic changes, including both
family-level rearrangements and the description of the
genera Ceuthomantis Heinicke et al., 2009,
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Tachiramantis Heinicke et al., 2015, Microkayla De la
Riva et al., 2018, Qosqophryne Catenazzi et al., 2020,
and Bahius Dubois et al., 2021.
Tachiramantis was named to accommodate three spe-

cies, Tachiramantis douglasi (Lynch, 1996),
Tachiramantis lentiginosus (Rivero, 1982), and
Tachiramantis prolixodiscus (Lynch, 1978), originally
described as part of Eleutherodactylus and later trans-
ferred to Pristimantis Jim�enez de la Espada, 1870 but
found on the basis of molecular phylogenetic analyses
to be more closely related to Psychophrynella,
Holoaden Miranda-Ribeiro, 1920, Bryophryne Hedges
et al., 2008, Noblella Barbour, 1930, and Barycholos
Heyer, 1969 than to Pristimantis (Heinicke et al., 2015).
Tachiramantis is distributed on both sides of the
T�achira Depression in the Cordillera de M�erida of
Venezuela and adjacent parts of the Cordillera Oriental
of Colombia, as well as the Sierra de Perij�a along the
Venezuela–Colombia border. Subsequently, Pristimantis
lassoalcalai Barrio-Amor�os et al., 2010, distributed in
the Serran�ıa de Perij�a in Venezuela with possible distri-
bution in Colombia (Barrio-Amor�os et al., 2010; Rojas-
Runjaic et al., 2020), was found to be the sister species
of T. douglasiþT. lentiginosus and transferred to
Tachiramantis by Rojas-Runjaic et al. (2020).
Heinicke et al. (2015) considered the exact phylogen-

etic position of Tachiramantis to be ambiguous but ten-
tatively included it in Craugastoridae (which then
included Strabomantidae). Later, Heinicke et al. (2018)
found Tachiramantis to be the sister group of
Craugastor Cope, 1862 þ Haddadus Hedges et al.,
2008 and restricted Craugastoridae to these three genera.
Jetz and Pyron (2018) and Dubois et al. (2021) did not
include any of the Tachiramantis species in their phylo-
genetic analyses, because they employed the sequences
analysed previously by Pyron and Wiens (2011).
The discovery of Tachiramantis raises questions about

the relationships of several other species currently referred
to Pristimantis, a genus of more than 500 species, approxi-
mately two-thirds of which have not been included in
quantitative phylogenetic analyses. For example, Lynch
(1996, 2003a) hypothesized that two of the species cur-
rently referred to Tachiramantis (T. douglasi and T. prolix-
odiscus) might be closely related to two Pristimantis
species from the Sierra Nevada de Santa Marta (SNSM) in
northern Colombia (T. douglasi with P. galdi and T. pro-
lixodiscus with P. tayrona Lynch, 1996, 2003a), and sev-
eral more potential close relatives have yet to be included
in phylogenetic analyses. In this study, we use nuclear and
mitochondrial gene sequences to test the monophyly and
relationships of Tachiramantis. On the basis of our results,
we describe a new genus of Craugastoridae and transfer
two additional species from Pristimantis to Tachiramantis,

while also providing a corrected and expanded morpho-
logical characterization of Tachiramantis.

Material and methods
Taxon sampling
In order to examine the phylogenetic relationships of
Tachiramantis, we obtained tissue samples from speci-
mens of the northern Cordillera Oriental, Serran�ıa de
Perij�a, and adjacent portions of the T�achira depression in
Colombia, where the genus has been reported to occur
previously (Heinicke et al., 2015), and we also included
species from the Sierra Nevada de Santa Marta (SNSM)
in northern Colombia (Supplemental Table S1). We gen-
erated DNA sequences for 42 individuals representing 10
named species of Tachiramantis and Pristimantis and one
undescribed species (Supplemental Table S1). Field num-
bers are reported for specimens not yet deposited in per-
manent collections, including JDL (John Douglas Lynch),
JJS (Jhon Jairo Sarria), PAG (Pedro A Galvis), and TG
(Taran Grant). Tissues collected by us were preserved in
95% ethanol following euthanization using 1% benzo-
caine; specimens were subsequently preserved in 10%
formalin and stored in 70% ethanol. Tissues and speci-
mens will be deposited in the collection of amphibians
from the Instituto de Ciencias Naturales of the
Universidad Nacional de Colombia (ICN). Given the
variable placement of Tachiramantis (Heinicke et al.,
2015, 2018), we also included sequences from GenBank
representing all 25 genera of terraranas for which DNA
sequences are available, as well as 35 non-brachycepha-
loid genera. We chose terminals from GenBank on the
basis of their phylogenetic proximity and number of
sequences available, with all chosen terminals having
sequences of mitochondrially encoded 16S rRNA (see
below). In total, the final matrix includes DNA sequences
from 414 terminals.

Distribution and natural history
We used ArcMap 10.4 (ESRI, 2012) to generate maps
for the species referred to Tachiramantis and the new
genus described herein (Fig. 1). These maps include
only the specimens used in our phylogenetic analysis
and ICN specimens examined by us. Observations of
the natural history of species of the new genus were
obtained from Rueda-Solano and Vargas-Salinas (2010),
Rueda-Solano et al. (2016), and expeditions to the
SNSM by one of us (LARS) between 2008 and 2020.

Character sampling
DNA sequences. Gene names and symbols follow Yates
et al. (2017), except H1, which is used herein to refer to
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Fig. 1. Geographic distribution of Tachiramantis (above) and Serranobatrachus gen. nov. (below). The circles represent the localities
from which we obtained tissue samples from specimens of the northern Cordillera Oriental, Serran�ıa de Perij�a, adjacent portions of
the T�achira depression, and the Sierra Nevada de Santa Marta.
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the mitochondrial H strand transcription unit 1 that
includes mitochondrially encoded 12S rRNA (MT-
RNR1), mitochondrially encoded 16S rRNA (MT-RNR2),
and the intervening tRNA valine (MT-TV). The follow-
ing fragments were sequenced for the present work (see
also Supplemental Tables S1, S2; primers and corre-
sponding citations are listed in Supplemental Table S3):
H1 (476–2527 bp); mitochondrially encoded cytochrome
c oxidase I (MT-CO1, 480–654 bp); H3.5 histone
(H3F3C, 285–328 bp), propiomelanocortin (POMC,
499–567 bp), recombination-activating 1 (RAG1,
471–630 bp), siah E3 ubiquitin protein ligase 1 (SIAH1,
397 bp), and tyrosinase (TYR, 356–531 bp); RNA, 28S
ribosomal 1 (RNA28S, 843 bp).
In addition to data generated in this study, we

included data for those markers and the following add-
itional ones from GenBank (Supplemental Table S2):
mitochondrially encoded cytochrome b (MT-CYB,
394–895 bp), MT RNR2, mitochondrially encoded
NADH:ubiquinone oxidoreductase core subunit 1 (MT-
ND1) and the intervening mitochondrially encoded
tRNA-Leu (MT TL, 834–1435 bp), mitochondrially
encoded NADH:ubiquinone oxidoreductase core subunit
2 (MT-ND2) and tRNAs (MT-ND2, 1452–1473 bp), two
exons of MYC proto-oncogene, bHLH transcription fac-
tor (MYC 2, 302 bp; MYC 2 and 3, 408–1233 bp); C-X-
C motif chemokine receptor 4 (CXCR4, 637–676 bp);
solute carrier family 8 member A1 (SLC8A1,
1240–1276 bp), solute carrier family 8 member A3
(SLC8A3, 1043–1123 bp), a different fragment of RAG1
than we sequenced (428–1354 bp), and rhodopsin (RHO,
316 bp). When museum voucher information was not
available either from GenBank data or the respective
publications, we used the identifiers provided by the ori-
ginal authors or the last name of the first author of the
publication. In total, we included 18 molecular markers.
Gonz�alez-Dur�an et al. (2017) noted that the H1

sequences published by Pinto-S�anchez et al. (2012) lack
several stretches of DNA that are present in all other
sequences available on GenBank and the sequences gen-
erated by them, indicating that portions of the sequences
had been deleted prior to GenBank accession. As such,
we followed Gonz�alez-Dur�an et al. (2017) in delimiting
blocks of homologous portions of these genes to accom-
modate these incomplete sequences in our analyses.

DNA extraction, amplification, and sequencing. Total
DNA was extracted from liver or thigh muscle preserved
in 95% ethanol using standard phenol–chloroform extrac-
tion protocols (Sambrook et al., 1989) or DNeasy
(QIAGEN, Valencia, CA) isolation kit. Amplification
was carried out in a 25ll reaction using the Thermo
Scientific PCR Master Mix (2X) (Thermo Fisher

Scientific Inc., USA). For the amplifications, the PCR
program included an initial denaturing step of 30 s at
96 �C, followed by 35 (mitochondrial gene fragments) or
45 (nuclear gene fragments) cycles of amplification
(96 �C for 30 s; 48–54 �C for 30 s; 60 �C for 60 s), with a
final extension step at 60 �C for 7min (Lyra et al., 2017).
For low-yielding samples, the annealing temperature was
lowered to 46 �C. PCR amplification products were
cleaned using the Agencourt AMPure XP DNA
Purification and Cleanup kit (Beckman Coulter
Genomics, Brea, CA, USA), and sequenced by a third
party (Macrogen Inc, Seoul, Korea), using fluorescent-
dye labelled terminators (ABI Prism Big Dye
Terminators v. 1.1 cycle sequencing kits; Applied
Biosystems, Foster City, CA, USA) with an ABI 3730XL
(Applied Biosystems, Foster City, CA, USA). All sam-
ples were sequenced in both directions to check for
potential errors. Chromatograms obtained from the auto-
mated sequencer were read and contigs made using the
sequence editing software Sequencher 5.2.3. (Gene
Codes, Ann Arbor, MI, USA). Complete sequences were
edited using Geneious v.6.1.6 (Kearse et al., 2012).

Molecular phylogenetic analysis
We employed the optimality criterion of phylogenetic
parsimony (Kluge, 2001), a non-parametric, non-statis-
tical method of historical inference that selects as opti-
mal the hypotheses of cladistic and patristic
relationships that maximize explanatory power by
hypothesizing the fewest causal events required to
explain the data (Grant & Kluge, 2008; Kluge & Grant,
2006). We employed tree-alignment (e.g., Sankoff,
1975; Var�on & Wheeler, 2012, 2013; Wheeler, 1996) in
POY 5.1.1 (W. C. Wheeler et al., 2015), which tests
hypotheses of nucleotide homology dynamically by opti-
mizing unaligned DNA sequences directly onto alterna-
tive topologies (Grant & Kluge, 2008; Kluge & Grant,
2006; Padial et al., 2014; Wheeler et al., 2006). In this
approach, the optimal alignment is selected objectively
according to the same optimality criterion used to select
the optimal topology (Wheeler, 1996, 2003a).
Computationally intensive analyses were performed

on the high-performance computing cluster Ace, which
consists of 12 quad-socket AMD Opteron 6376 16-core
2.3GHz CPU, 16MB cache, 6.4 GT/s compute nodes
(¼768 cores total), eight with 128GB RAM DDR3
1600MHz (16� 8Gb), two with 256GB (16� 16GB),
and two with 512GB (32� 16GB), and QDR 4X
InfiniBand (32Gb/s) networking.
Analyses included the following steps. First, using the

standard direct optimization algorithm (Wheeler, 1996),
we ran three 72 h searches using 240–304 CPUs (total
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of 61,016 CPU-hours) and the command ‘search’, which
implements a driven search composed of random add-
ition sequence Wagner builds, Subtree Pruning and
Regrafting (SPR) and Tree Bisection and Reconnection
(TBR) branch swapping (RASþ swapping; Goloboff,
1996), Parsimony Ratcheting (Nixon, 1999), and Tree
Fusing (Goloboff, 1996), storing the shortest trees from
each independent run and performing a final round of
Tree Fusing on the pooled trees. To accelerate searches,
equal-length fragments were constrained to be prea-
ligned in the first two runs, and that constraint was
removed in the third analysis. Next, we performed 2000
rounds of Tree Fusing of the optimal trees from the
three driven searches, also using the standard direct
optimization algorithm and all fragments treated as
unaligned. We then used the exact iterative pass algo-
rithm (Wheeler, 2003b) to calculate the cost of the opti-
mal trees identified in the previous analyses and
generate the matrix version of the tree-alignment (i.e.,
the implied alignment; Wheeler, 2003a) of the optimal
tree. All of the aforementioned analyses applied equal
costs to substitutions and indels. Finally, to search for
additional optimal trees, we performed an aggressive
search of the implied alignment in TNT v.1.5 (Goloboff
et al., 2008; Goloboff & Catalano, 2016; equal costs for
all transformations, gaps treated as fifth state), stopping
when the stable consensus was reached five times (tnt
command: xmult¼ replications 10 rss css xss ratchet 10
drift 10 fuse 5 consense 5).
We estimated clade support (sensu Grant & Kluge,

2008) using the Goodman-Bremer measure (Bremer,
1988; Goodman et al., 1982; Grant & Kluge, 2008) cal-
culated using the implied alignment and the parameters
specified in the bremer.run macro (for details see
Goloboff et al. (2008); macro available at ww.lillo.org.
ar/phylogeny/tnt) in TNT v.1.5 (Goloboff et al., 2008;
Goloboff & Catalano, 2016). As in any heuristic ana-
lysis, the resulting GB values should be interpreted as
approximations. In addition to the effects of more
exhaustive tree searches, shorter suboptimal trees could
be found by calculating the optimal tree-alignment for
each visited topology; however, the time requirements
would be prohibitive, and GB values derived from
implied alignments have been found to be less inflated
than those calculated using a MAFFT (Katoh, 2005;
Katoh & Standley, 2014) similarity-alignment (Padial
et al., 2014).
We calculated uncorrected pairwise genetic distances

(p-distances) among specimens of the new genus and
Tachiramantis in Geneious Prime 2020.1.1 (Biomatters
Inc., San Diego, CA, USA). For this analysis, a 499 bp
fragment of MT-RNR2 shared by almost all specimens
was aligned using MAFFT (Katoh et al., 2005). We

excluded terminals that did not contain the complete
sequence of the selected fragment.

Morphological data
To identify morphological synapomorphies and diagnos-
tic characters for Tachiramantis, we examined both
external morphology, using the terminology of Lynch
and Duellman (1997) and Duellman and Lehr (2009),
and internal morphology (cranial osteology and axial
skeleton) using the osteological terminology of
Duellman and Trueb (1994), Gonz�alez-Dur�an et al.
(2017), Guayasamin (2004), Lynch (1971, 1997, 2000,
2001), and Trueb (1993).
External and internal morphology was compared by

direct examination of specimens in the ICN and
MZUSP (Museu de Zoologia da Universidade de S~ao
Paulo) amphibian collections, including 113 specimens
examined for external morphology and 44 for cranial
and axial skeletal characters (Appendix 1). We also
compared the observed variation to published accounts
for species groups of Pristimantis and other genera of
Brachycephaloidea (Ardila-Robayo, 1979; Gonz�alez-
Dur�an et al., 2017; Guayasamin, 2004; Heinicke et al.,
2018; Lynch, 1971, 1976, 1996, 2000, 2001).
We studied the following external characters: texture

of skin of dorsum and venter; dorsolateral folds, tym-
panic membrane, vocal slits; vomerine odontophores;
discs on fingers and toes; supernumerary plantar
tubercles; relative length of fingers I and II (determined
by adpressing finger I to finger II), relative lengths of
toes III and V (assessed by pressing these two toes
against toe IV). Abbreviations are as follows: snout–
vent length (SVL); interorbital distance (IOD). Fingers
are numbered preaxially to postaxially from I to IV.
Although this is not consistent with the hypothesis that
digit I of other tetrapods was lost in amphibians, it
agrees with common usage in Terrarana taxonomy (e.g.,
Gonz�alez-Dur�an et al., 2016). We also studied one
internal character: testis colour.
We studied the following characters of the skull:

orientation of the alary processes of the premaxillae;
relationship of the nasals; relationship between the
nasals and frontoparietals (sphenethmoid visible or not
visible dorsally); relationship of frontoparietals and
prootics; occurrence and morphology of cranial crest;
lengths of the zygomatic and otic rami of the squamo-
sal; ornamentation along the dorsal edge of the zygo-
matic and otic rami of the squamosal; shape of the
dentigerous process of the vomer; length of the dentiger-
ous process of the vomer; orientation of the post-choa-
nal process of the vomer; lengths of the palatines;
length of the cultriform process of the parasphenoid;
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length of the sphenethmoid (ventral view); and length of
the alary process of the hyoid. We included one charac-
ter of the axial skeleton: relationship of the sacrum and
presacral vertebra VIII.
To identify putative morphological synapomorphies,

we constructed a character matrix in Mesquite v. 3.61
(Maddison & Maddison, 2019) and optimized the char-
acters on the optimal topology under Fitch optimization
(Fitch, 1971).

Results
Molecular phylogenetic analyses
The driven searches performed 1418 RASþTBR, 1955
rounds of Tree-Fusing, and 344 rounds of Ratcheting.
Following additional Tree-Fusing, iterative pass opti-
mization, and searching of the implied alignment, 361
most parsimonious trees of 81,713 steps were obtained.
The entire topology of the strict consensus of all most
parsimonious trees is presented in Supplemental
Fig. S1.
Our analyses corroborated the monophyly of all bra-

chycephaloid genera except Pristimantis (see below), as
well as that of Brachycephaloidea (GB ¼ 60),
Brachycephalidae (GB ¼ 59), Eleutherodactylidae (GB ¼
77), and Strabomantidae (GB ¼ 29). Craugastoridae is
not monophyletic due to the position of Haddadus, with
Ceuthomantis þ Haddadus recovered as sister to
Eleutherodactylidae (i.e., Ceuthomantis [Ceuthomantidae]
is not recovered as sister group to the remainder of
Brachycephaloidea, as in Heinicke et al., 2018).
The differences among the most parsimonious trees

involve the internal relationships among specimens of
‘Pristimantis’ cristinae (Lynch & Ruiz-Carranza, 1985),
‘P.’ megalops (Ruthven, 1917), ‘P.’ sanctaemartae
(Ruthven, 1917), ‘P.’ tayrona (Lynch & Ruiz-Carranza,
1985), P. lancinii (Donoso-Barros, 1965), P. vanadise
(La Marca, 1984), and T. douglasi (Supplemental Fig.
S1), among species in the clade containing Oreobates
choristolemma (Harvey & Sheehy, 2005), O. granulosus
(Boulenger, 1903), and O. sanderi (Padial et al., 2005),
and among species in the clade containing O. lundbergi
(Lehr, 2005), O. pereger (Lynch, 1975), O. remotus
(Teixeira et al., 2012), and O. saxatilis (Duellman,
1990) þ O. quixensis (Jim�enez de la Espada, 1872;
Supplemental Fig. S1).
Our analyses corroborated both the placement of

Tachiramantis far from Pristimantis in Craugastoridae
and its monophyly (GB ¼ 26), albeit with the inclusion
of Pristimantis cuentasi (Lynch, 2003b) as the sister of
T. lentiginosus (Rivero, 1984) þ T. padrecarlosi
(Mueses-Cisneros, 2006; Supplemental Fig. S1) and P.

tayrona as sister to all other species of Tachiramantis.
We also found that Pristimantis carmelitae (Ruthven,
1922), P. cristinae, P. delicatus (Ruthven, 1917), P.
insignitus (Ruthven, 1917), P. megalops, and P. sanc-
taemartae – all endemic to the SNSM (Fig. 1) – com-
prise the sister clade of Tachiramantis, thereby further
refuting the monophyly of Pristimantis (Supplemental
Fig. S1). This clade is both well-supported by molecular
data (GB ¼ 31) and, as described below (Systematic
account), diagnosed from Tachiramantis by seven mor-
phological synapomorphies, including six in the skull
and one in the axial skeleton, as well as differences in
external morphology, leading us to propose a new genus
for this clade (Fig. 2).

Systematic account

Order Anura Oppel, 1811
Superfamily Brachycephaloidea G€unther, 1858
Family Craugastoridae Hedges et al., 2008

Genus Serranobatrachus gen. nov.

Type species.

Eleutherodactylus insignitus Ruthven, 1917

Etymology. The genus name is formed by combining
the word serrano, the local name used to refer to people
from the Sierra Nevada de Santa Marta, and the Greek
batrachos or batrakheios, meaning frog, in reference to
the endemism of these frogs to this geological forma-
tion. The name is masculine.

Diagnosis. Medium to large terraranas (adult female
SVL from 28mm in S. delicatus to 63mm in S. cristi-
nae, x̅ ¼ 42mm. n¼ 76), adult males smaller than
females (adult male SVL from 19mm in S. megalops to
43mm in S. cristinae, x̅ ¼ 32mm, n¼ 93); head narrow
(37–41% SVL), snout short (S. carmelitae, S. delicatus,
S. megalops, S. insignitus) or long (S. sanctaemartae
and S. ruthveni); lips weakly flared in adult females;
IOD usually broader than upper eyelid (adult females
102–110%, n¼ 33), except in S. cristinae and S. ruth-
veni with IOD narrower than upper eyelid (adult females
88.9–94.7%, n¼ 19). Skin of dorsum shagreen (S. cristi-
nae, S. delicatus, S. megalops, and S. sanctaemartae) or
smooth with low, flat warts (S. carmelitae, S. insignitus,
and S. ruthveni); dorsolateral folds reaching level of
sacral vertebra (S. cristinae and S. ruthveni), confined to
anterior half of body (S. carmelitae, S. delicatus, and S.
sanctaemartae) or absent (S. insignitus and S. mega-
lops). Skin of venter usually areolate (skin of belly tex-
tured but not areolate or completely smooth in
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S. carmelitae); vomerine odontophores large, triangular
in outline; dentigerous processes reaching palatines pos-
teriorly; vocal slits present in adult males (absent in S.
carmelitae and S. insignitus); nuptial pads present on
finger I of adult males (absent in S. insignitus, S. ruth-
veni, and S. sanctaemartae); tympanic membrane differ-
entiated and tympanic annulus visible externally. Discs
on fingers and toes expanded (narrow in S. carmelitae,

S. megalops, and S. ruthveni); fingers and toes with lat-
eral keels (absent in S. carmelitae); supernumerary plantar
tubercles absent (small tubercle present at base of toes
II–IV in S. cristinae and S. sanctaemartae); heel with
tubercles or tarsus with fold; toe III longer than toe V (S.
carmelitae, S. delicatus, S. megalops, S. insignitus, and S.
ruthveni) or toe V longer than toe III, with toe V not
extending beyond the penultimate subarticular tubercle of

Fig. 2. Phylogenetic relationships of Serranobatrachus gen. nov. and Tachiramantis. The tree is a portion of the strict consensus of
361 most parsimonious trees (MPTs; 81713 steps) showing minimum branch-lengths (derived from one of the MPTs) and all
supported nodes labelled with Goodman-Bremer values. Photos by Luis Alberto Rueda-Solano and Marco Rada.
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toe IV (S. cristinae and S. sanctaemartae). Apical supple-
mentary elements of m. intermandibularis broad, in con-
tact medially. Testes white in adult males (Fig. 4B). Alary
process of premaxilla terminating in inverted V-shape and
directed posterodorsad; otic ramus of squamosal shorter
than zygomatic ramus and separated from posterolateral
portion of prootic. Crests present on frontoparietals (Fig.
7A). Sphenethmoid long, reaching or surpassing the anter-
ior edge of the nasals in fully developed adults. Sacrum
and presacral vertebra VIII fused (Fig. 7C).

Content. Seven species: Serranobatrachus carmelitae
(Ruthven, 1922) new combination; S. cristinae (Lynch &
Ruiz-Carranza, 1985) new combination; S. delicatus
(Lynch & Ruiz-Carranza, 1985) new combination; S.
insignitus (Ruthven, 1917) new combination; S. megalops
(Ruthven, 1917) new combination; S. ruthveni (Lynch &
Ruiz-Carranza, 1985) new combination; S. sanctaemartae
(Ruthven, 1917) new combination (Fig. 2).

Comparisons to other genera. Serranobatrachus is
most readily distinguished from other terraranas on the
basis of finger and toe lengths. Finger I being shorter
than finger II differentiates Serranobatrachus from
Brachycephalus Fitzinger, 1826, Craugastor (except
some members of the C. mexicanus and C. rhodopis
species series), Strabomantis Peters, 1863, and
Oreobates. In Serranobatrachus carmelitae, S. delicatus,
S. megalops, S. insignitus, and S. ruthveni, toe III is lon-
ger than toe V, a condition shared with Adelophryne
Hoogmoed & Lescure, 1984, Barycholos,
Brachycephalus, Dischidodactylus Lynch, 1979,
Euparkerella, Haddadus, Ischnocnema Reinhardt &
L€utken, 1862, Oreobates, Phyzelaphryne Heyer, 1977,
and Strabomantis. Although toe V is longer than toe III
in S. cristinae and S. sanctaemartae, toe V does not
extend beyond the penultimate subarticular tubercle on
toe IV, which is also seen in Ceuthomantis, a few spe-
cies of Craugastor (viz. Cr. alfredi [Boulenger, 1898],
Cr. bocourti [Brocchi, 1877], Cr. decoratus [Taylor,
1942], C. glaucus [Lynch, 1967], Cr. guerreroensis
[Lynch, 1967], Cr. megalotympanum [Shannon &
Werler, 1955], Cr. polymniae [Campbell et al., 1989],
C. silvicola [Lynch, 1967], Cr. spatulatus [Smith,
1939], Cr. stuarti [Lynch, 1967], Cr. taylori [Lynch,
1966], Cr. xucanebi [Stuart, 1941], and Cr. yucatanensis
[Lynch, 1965]), the Eleutherodactylus (Pelorius) ruthae
species series, several Pristimantis species groups (viz.
the P. conspicillatus, P. ridens, and P. devillei species
groups), Tachiramantis, and Yunganastes (except in Y.
fraudator [Lynch & McDiarmid, 1987]).

Remarks. Although DNA sequences are unavailable for
S. carmelitae and S. ruthveni, we refer them to
Serranobatrachus on the basis of the seven skeletal syn-
apomorphies shared with the other species of this clade.
Lynch and Ruiz-Carranza (1985) stated that S. carmeli-
tae and S. sanctaemartae lack cranial crests; however,
we observed low cranial crests in these two species
(e.g., S. carmelitae: ICN 741–42, 8234, 8236; S. sanc-
taemartae: ICN 740, 13042, 13050), as in all other spe-
cies referred to Serranobatrachus.
Scoring the lengths of fingers I and II and toes III

and V requires caution, because lengths can vary due to
preservation artefacts, and only straight digits of well-
preserved specimens should be used for these compari-
sons. Additionally, Duellman and Lehr (2009) observed
that ontogenetic changes in relative finger lengths occur
in at least some species in which juveniles have finger I
shorter than finger II and adults have finger I longer
than finger II (e.g., Hypodactylus lucida [Cannatella,
1984]), although we have not observed any ontogenetic
differences in the specimens we examined. To compare
the length of fingers I and II we recommend adpressing
the digits so that finger I lies immediately adjacent to
finger II according to Duellman and Lehr (2009). To
determine the relative lengths of toes III and V, we rec-
ommend adpressing toes III and V against toe IV.
The results of our phylogenetic analysis and genetic

distances suggest the existence of an additional species,
referred to in the trees as Serranobatrachus sp. (Fig. 2,
Supplemental Fig. S1; Supporting Information Table
S4). Genetic distances between species were 4.8–14.9%
and between most conspecifics were 0.2–1.4%, the
exception being S. sanctaemartae (Supporting
Information Supplemental Table S4). In S. sanctaemar-
tae, pairwise distances were 3.5–12%, suggesting that it
comprises a complex of species. We suspect that the dif-
ferent lineages of S. sanctaemartae are probably associ-
ated with the polymorphism described by Ruthven
(1917) and Lynch and Ruiz-Carranza (1985). Additional
evidence is required to determine if the distances and
phylogenetic structure refer to genetically structured
conspecific populations or different species.

Distribution and natural history. Serranobatrachus
gen. nov. is endemic to the cloud forest and p�aramo of
the northern, eastern, and western flanks of the SNSM
at 1,100–3,900m above sea level (a.s.l.). The SNSM is
an isolated mountain that reaches 5,775m a.s.l. The dry
months are between December and February and those
with the highest rainfall are September and October
(Jim�enez, 1992).
Serranobatrachus carmelitae (Fig. 3A) is a common,

nocturnal frog at 1,524–2,200m a.s.l. found beneath
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Fig. 3. Described species of Serranobatrachus gen. nov. and Tachiramantis from the Sierra Nevada de Santa Marta, Colombia. (A)
Serranobatrachus carmelitae, (B) Serranobatrachus cristinae, (C) Serranobatrachus delicatus, (D) Serranobatrachus insignitus, (E)
Serranobatrachus megalops, (F) Serranobatrachus ruthveni, (G) Serranobatrachus sanctaemartae, (H) Tachiramantis tayrona. Photo
Giovanni Chaves-Portilla (A-E,G,H) and Jaime Culebras (F).
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rocks, moss, and leaf litter along mountain streams in
cloud forest (Table 1). Serranobatrachus cristinae (Fig.
3B) is an uncommon, nocturnal frog found on phytotel-
mata, forest-floor plants, and leaf litter between
1,500–2,600m a.s.l. (Rueda et al., 2016). This species
has been observed during times of heavy rainfall and dry
season. Serranobatrachus delicatus (Fig. 3C) is a frog
known from elevations from 1500–3500m a.s.l. within
the p�aramo ecotone (like Pristimantis cristinae in Rueda-
Solano & Vargas-Salinas, 2010) where it is active at
night on the forest floor and on the leaves, branches, and
stems of shrubs. Males call (a single ‘click’) at heights
less than 70 cm above the ground (Table 1).
Serranobatrachus insignitus (Fig. 3D) is a rare species
found in cloud forest at 1,500–2,600m a.s.l. This species
is nocturnal and terrestrial, occurring in leaf litter and
fallen trunks of the cloud forest (Rueda et al., 2016). A
few individuals were also observed in intervened areas.
Serranobatrachus megalops (Fig. 3E) is currently known
at 1,300–2,500m a.s.l. This is a very abundant species;
although few individuals were also observed in degraded
habitats, specimens have been found under rocks and in
low vegetation during the day and night (Rueda et al.,
2016), but vocalization peaks at night (Table 1). Calling
males (calls with a single ‘click’) and gravid females
were observed during the two climatic seasons of the
year. Serranobatrachus ruthveni (Fig. 3F) is known at
elevations from 1,800–3,900m a.s.l. (Rueda-Solano &
Vargas-Salinas, 2010). This species is nocturnal and ter-
restrial, being found under rocks, inside terrestrial cav-
ities, and under logs of cloud forest and paramos (Rueda
et al., 2016). Serranobatrachus sanctaemartae (Fig. 3G)
is known at elevations of 1,100–2,600m a.s.l. and is
active at night on arboreal vegetation (Table 1). Choruses
can be heard throughout the year, even during the driest
periods (Rueda et al., 2016). Males have been heard call-
ing during the dry season on vegetation growing near
streams, but in the rainy season they call some distance

(�20m) from water courses inside the forest. Gravid
females have been observed during the two climatic sea-
sons of the year (Table 1).

Conservation. Species of Serranobatrachus are endemic
to the SNSM and distributed within the Parque Nacional
Natural Sierra Nevada de Santa Marta, considered the
most irreplaceable protected area in the world (Le Saout
et al., 2013). The SNSM boasts an amazing variety of
ecosystems, including dry and wet tropical forests, sub-
Andean and Andean forests, moors, and zones with per-
petual snow cover, and extends from sea level to snow-
capped peaks in a straight-line distance of less than
40 km (Dechner & Diazgranados, 2007; Rueda-Solano
et al., 2016). However, over the past 50 years, the pri-
mary forest of the SNSM has decreased significantly
(Dechner & Diazgranados, 2007). Some consider that
70–85% of its original coverage could already have
been lost (Fundaci�on Pro-Sierra Nevada de Santa
Marta, 1991).
Serranobatrachus species are vulnerable to habitat

destruction or changes in the landscape (Roach et al.,
2020), climate change, and emerging diseases (e.g., chy-
tridiomycosis), with several species of Serranobatrachus
reported to be infected with Batrachochytrium dendro-
batidis (Flechas et al., 2017). These factors contribute to
four species of Serranobatrachus being in the
Endangered (EN) category: S. carmelitae, S. cristinae,
S. delicatus, and S. ruthveni, and the rest in the Near
Threatened (NT) category: S. insignitus, S. megalops,
and S. sanctaemartae by the IUCN Red List of
Threatened (IUCN, 2020).

Order Anura Oppel, 1811
Superfamily Brachycephaloidea G€unther, 1858
Family Craugastoridae Hedges et al., 2008
Tachiramantis Heinicke, Barrio-Amoros &

Hedges, 2015

Table 1. Microhabitat use and time of activity in the frogs of the genera Serranobatrachus and Tachiramantis.

Specie Microhabitat use Time of activity

Serranobatrachus carmelitae Low vegetation/leaf litter Nocturnal
Serranobatrachus cristinae Phytotelma/leaf litter Nocturnal
Serranobatrachus delicatus Low vegetation less than 80 cm high/leaf litter Nocturnal
Serranobatrachus insignitus Forest floor/leaf litter Nocturnal
Serranobatrachus megalops Low vegetation/leaf litter Diurnal/Nocturnal
Serranobatrachus ruthveni Forest floor Nocturnal
Serranobatrachus sanctaemartae Arboreal vegetation within 0–4.0m of the ground Nocturnal
Tachiramantis cuentasi Arboreal vegetation within 0–2.0m of the ground Nocturnal
Tachiramantis douglasi Low vegetation/leaf litter Nocturnal
Tachiramantis lentiginosus Arboreal vegetation Nocturnal
Tachiramantis padrecarlosi Low vegetation Nocturnal
Tachiramantis prolixodiscus Associate with bromeliads Nocturnal
Tachiramantis tayrona Associate with bromeliads/low vegetation Nocturnal

10 S. Arroyo et al.



Type species.

Eleutherodactylus prolixodiscus Lynch, 1978

Diagnosis. Small to medium terraranas (adult females
SVL from 22mm in T. douglasi to 31mm in T. cuen-
tasi, x̅ ¼ 27mm, n¼ 77); moderate sexual size dimorph-
ism (adult males SVL from 15mm in T. tayrona to
30mm in T. cuentasi, x̅ ¼ 22mm, n¼ 50); head narrow
(32–40% SVL); head as long as wide, snout long (T.
cuentasi, T. douglasi, and T. lentiginosus) or short (T.
prolixodiscus and T. tayrona); tubercle or papilla present
on tip of snout in T. prolixodiscus and T. tayrona; lips
moderately flared, most obvious in adult females in T.
prolixodiscus and T. tayrona; IOD narrower than upper
eyelid (adult females 54.9–71.8%, n¼ 46); cranial crests
of frontoparietals absent, except in T. douglasi (Fig.
7B). Short dorsolateral folds present, evident along the
body up to the sacrum in T. cuentasi, T. douglasi, T.
lentiginosus, and T. padrecarlosi; dorsal folds absent in
T. prolixodiscus and T. tayrona; skin of venter areolate.
Vomerine odontophores triangular in outline; dentig-

erous process not reaching palatines posteriorly (except
in T. douglasi, T. padrecarlosi, and T. tayrona); vocal
slits present; males with nuptial pads on finger I (absent
in T. padrecarlosi). Tympanic membrane differentiated
and tympanic annulus visible externally. Discs on fin-
gers and toes expanded; finger I shorter than finger II;
fingers bearing lateral keels; numerous low supernumer-
ary plantar tubercles present; toe V longer than toe III,
with toe V reaching penultimate subarticular tubercle on
toe III in T. tayrona. In profile, length of otic ramus of
squamosal longer than zygomatic ramus. Sphenethmoid
not reaching postchoanal process of vomer. Apical sup-
plementary element of m. intermandibularis absent,
except in T. tayrona. Presacral vertebra VIII and sacrum
free (fused in T. douglasi). Testes of adult males black.
Tachiramantis douglasi, T. padrecarlosi, and T. lentigi-
nosus have dirty-white spots surrounded by black in the
groin and on the hidden surfaces of the hind limbs.

Content. Seven species: Tachiramantis cuentasi (Lynch,
2003b) new combination; T. douglasi (Lynch, 1996); T.
lentiginosus (Rivero, 1982); T. lassoalcalai (Barrio-
Amor�os et al., 2010); T. padrecarlosi (Mueses-Cisneros,
2006) new combination; T. prolixodiscus (Lynch,
1978); and T. tayrona (Lynch & Ruiz-Carranza, 1985)
new combination (Fig. 2).

Remarks. In addition to the molecular evidence
included in their phylogenetic analyses, Heinicke et al.
(2015) reported morphological evidence that further sup-
ports recognition of Tachiramantis. Specifically, they
considered the large, strongly developed vomers almost
fully surrounding the choanae in T. douglasi, T.

lentiginosus, and T. prolixodiscus to be a synapomorphy
of Tachiramantis, and we also observed this morph-
ology in T. padrecarlosi and T. tayrona. However,
although Heinicke et al. (2015: 157) defined this charac-
ter in terms of ‘vomer size’, it is actually related to the
orientation of the post-choanal process of the vomer.
That is, in Tachiramantis the post-choanal process is
directed anterodorsad, which is what causes the choana
to be almost entirely surrounded.
Heinicke et al. (2015) also reported frontoparietal–-

prootic fusion as a synapomorphy of Tachiramantis,
scoring this character for Tachiramantis on the basis of
one individual of T. prolixodiscus via high-resolution X-
ray computed tomography (CT) and data on T. douglasi
from the literature (Lynch, 1996); osteological informa-
tion was (and is still) not available for T. lentiginosus.
We examined the cranial morphology of a cleared and
stained specimen of T. prolixodiscus (ICN 15163) and
observed that these bones are not fused, although they
are in T. douglasi (ICN 15526–15528). Given the vari-
ation within Tachiramantis and lack of information on
the cranial morphology of T. cuentasi, T. lentiginosus,
T. padrecarlosi, and T. tayrona, the optimization of
frontoparietal–prootic fusion as a synapomorphy for
Tachiramantis is unclear at this time.
Tachiramantis tayrona was initially referred to the

Eleutherodactylus lacrimosus assemblage of the former
Eleutherodactylus unistrigatus group by Lynch and Ruiz-
Carranza (1985), subsequently recognized by Hedges
et al. (2008) and Padial et al. (2014) as the Pristimantis
lacrimosus group composed mostly of species that inhabit
bromeliads. The monophyly of the P. lacrimosus species
group was refuted by Pinto-S�anchez et al. (2012) and
Rivera-Correa et al. (2017) and ultimately resolved by
Gonz�alez-Dur�an et al. (2017) with the erection of the P.
boulengeri species group, also mostly composed of spe-
cies inhabiting bromeliads (at least occasionally).
According to our phylogenetic results, pairwise gen-

etic distances, and morphological analysis, T. tayrona
comprises more than one species, with pairwise genetic
distances between putative conspecifics of 0.2–11.7%.
Lynch and Ruiz-Carranza (1985) reported geographic
variation in body size in the description of T. tayrona,
and we suggest that the type series of T. tayrona prob-
ably comprises at least two species. Genetic distances
also suggest species complexes within T. douglasi, for
which intraspecific genetic distances varied from 0.2 to
7.9% (Supplemental Table S4).
In this study Tachiramantis is delimited by three

putative synapomorphies. (1) Post-choanal process of
vomer directed anterodorsad (modified from Heinicke
et al., 2015; (2) palatines short (distance between
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palatines equal to or greater than half the palatine
length); (3) testes black in adult males (Fig. 4A).

Distribution and natural history. Tachiramantis is dis-
tributed from the northern Cordillera Oriental in
Santander and Norte de Santander Departments to the
northern and western slopes of the SNSM, in Colombia,
in the Serran�ıa de Perij�a, Colombia and Venezuela, and
in Cordillera de Merida in T�achira State, Venezuela,
according to our samples from the ICN collection and
data from literature. Tachiramantis cuentasi is known
from the type locality in the Serran�ıa de Perij�a, Casa de
Cristal at 2,900m a.s.l. (Lynch, 2003b). The species has
been observed at night on vegetation below 2m from the
ground (Lynch, 2003b). Tachiramantis douglasi occurs on
the two flanks of the northern part of the Cordillera
Oriental at elevations of 1,400–2,600m a.s.l. (Arroyo
et al., 2008). This is a common, nocturnal species, but
males have been heard calling during the day as well
(Arroyo et al., 2008). Reproduction in this species appears
to be seasonal, with no vocalizations heard at the begin-
ning of dry season and most adult males found in the
rainy season (Arroyo et al., 2008). Tachiramantis lentigi-
nosus is known from eastern flank of Cordillera Oriental,
the eastern slopes of the Serran�ıa de Perij�a, and in
T�achira Venezuela at elevations between 600 and 2,700m
a.s.l. (Barrio-Amor�os et al., 2019). Tachiramantis padre-
carlosi is only known from the type locality, cloud forest

of the western flank of Cordillera Oriental, municipalities
of Floridablanca and Tona at elevations of 1,750–1,950m
a.s.l. Frogs have been collected at night on vegetation
below 2m (Mueses-Cisneros, 2006). Tachiramantis pro-
lixodiscus is known from the northern part of the
Cordillera Oriental and the Serran�ıa de Perij�a along the
Colombia–Venezuela border at elevations of
1,800–2,700m a.s.l. The specimens have been found in
bromeliads, and males have been heard calling at night
(Arroyo et al., 2008; Table 1). Tachiramantis tayrona
(Fig. 3H) is known from the northern and western flanks
of the SNSM, in the sector of Serran�ıa de San Lorenzo
and Serran�ıa Cebolleta, at elevations of 980–2,700m a.s.l.
Calling is restricted to bromeliads, and most males have
been observed there (Rueda et al., 2016). We found adult
males sitting on clutches of 9� 14 eggs (x̅ ¼10 eggs,
SD¼ 1.69, n¼ 7) on phytotelmata. Males care for mul-
tiple clutches in the same place inside the bromeliad.
Males have been heard calling during the rainy season of
the year. The call is constituted by several clicks.
Clutches have been observed exclusively in the rainy sea-
son. Tachiramantis aff. tayrona specimens collected in
the sector of San Pedro de la Sierra and Santa Clara vil-
lages at elevations of 1,400m a.s.l. were observed in bro-
meliads, but males have also been observed calling in
ravines along the road. Specimens were captured under
rocks and within low vegetation (Table 1). Although indi-
viduals of T. prolixodiscus have been found using bro-
meliads as a microhabitat (Arroyo et al., 2008; Lynch,
1978), evidence of reproduction in bromeliads has so far
only been found in T. tayrona.

Conservation. Tachiramantis douglasi, T. lentiginosus, T.
prolixodiscus, and T. tayrona are distributed within several
protected areas in Colombia: �Area Natural �Unica los
Estoraques, Estaci�on Experimental El Rasg�on, and Parque
Nacional Natural Sierra Nevada de Santa Marta. Secondary
forest is the dominant vegetation coverage in these areas,
with fragmented and deforested zones due to agricultural
development. Distribution within protected areas is not suf-
ficient for their conservation status given the presence of
annual and perennial non-timber crops, livestock farming
and ranching, and human settlements in their range (IUCN,
2020). There are two species in the Vulnerable (VU) cat-
egory: T. douglasi and T. lassoalcalai, and one in the
Endangered (EN) category: T. lentiginosus (IUCN, 2020).

Discussion
Hypothesis of phylogenetic relationships
outside Brachycephaloidea
Insofar as our primary objectives were to test the mono-
phyly and phylogenetic placement of Tachiramantis

Fig. 4. Testes. (A) Tachiramantis prolixodiscus (ICN 15158),
black testes. (B) Serranobatrachus sanctamartae (ICN 8244),
white testes.
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within Brachycephaloidea, we designed our sampling
outside Brachycephaloidea to include representatives of
most families in Nobleobatrachia (sensu Frost et al.,
2006) as outgroups, but we did not sample those fami-
lies densely. As such, our sample is not adequate to
comprise a strong test of the relationships outside
Brachycephaloidea. Nevertheless, below we summarize
the relationships and compare them with previous find-
ings (Fig. 5).
Australobatrachia, represented by Calyptocephalella

gayi (Dum�eril & Bibron, 1841; Calyptocephallelidae)
and Philoria sphagnicolus (Moore, 1958;
Limnodynastidae), is not monophyletic, with Sooglossus
thomasseti (Boulenger, 1909; Sooglossidae) sister to P.
sphagnicolus. Previous studies have found Sooglossidae
to be more closely related to Australobatrachia, with
both groups together with Nobleobatrachia forming
Hyloides (Frost et al., 2006), or the sister group of
Ranoidea (Feng et al., 2017; Fraz~ao et al., 2015; Pyron,
2014; Roelants et al., 2007; Wiens, 2007, 2011) or
Ranoides þ (AustralobatrachiaþNobleobatrachia) (Pyron &
Wiens, 2011). Note that the position of Sooglossidae
violates the monophyly of Hyloides sensu Frost et al.
(2006). Hyloidea, as defined by Pyron and Wiens
(2011), is equivalent to Nobleobatrachia of Frost et al.
(2006), which we employ to enable use of the superfam-
ily rank within this clade (e.g., Brachycephaloidea and
Dendrobatoidea).
Within Nobleobatrachia, our analysis corroborated the

monophyly of Dendrobatoidea, Brachycephaloidea,
Bufonidae, and Hemiphractidae, all of which were rep-
resented by more than one genus in our analysis (Fig.
5). Alsodidae, Hylidae, and Leptodactylidae, also repre-
sented by more than one genus, were not found to be
monophyletic (Fig. 5). As in Grant et al. (2017), our
representative of Leiuperinae, Physalaemus cuvieri
(Fitzinger, 1826), is sister to Bufonidae. We recover
Brachycephaloidea as the sister group of
Hemiphractidae (Fig. 5), corroborating the monophyly
of Orthobatrachia (Heinicke et al., 2009).

Phylogenetic relationships among genera of
Brachycephaloidea
Our results regarding the relationships among the genera
of Craugastoridae and Strabomantidae both agree and
disagree with recent studies (Fig. 6). We recovered
Holoaden and Euparkerella Griffiths, 1959 as sister taxa
(Fig. 6) and corroborated the relationship Bryophryne
(Bahius (Barycholos þ Noblella)) (Canedo & Haddad,
2012; Pyron, 2014; Fig. 6F, G). Motta et al. (2021)
recovered a different topology: (Euparkerella þ
Holoaden) (Bahius (Barycholos þ Noblella)), while

Dubois et al. (2021) found Bahius, Barycholos, and
Phyllonastes Heyer, 1977 to form a trichotomy in a
polytomy with Bryophryne, Noblella þ Microkayla, and
Holoaden þ Euparkerella. Our data support the mono-
phyly of Pristimantinae, with Pristimantis and
Yunganastes Padial et al., 2007 as sister groups and
Phrynopus Peters, 1873 as sister to Lynchius Hedges
et al., 2008 þ Oreobates Jim�enez de la Espada, 1872,
relationships that were also supported by Padial et al.
(2014: Fig. 6E), Pyron (2014: Fig. 6F), Heinicke et al.
(2015: Fig. 6D), Gonz�alez-Dur�an et al. (2017: Fig. 6C),
and Motta et al. (2021).

Serranobatrachus gen. nov
In their study of the ‘eleutherodactyline’ frogs of the
SNSM, Lynch and Ruiz-Carranza (1985) provided
descriptions of three new species and a synopsis of six
additional species. These authors proposed that the
affinities of species from the SNSM are either to species
found in the northern Andes of Colombia or with other
Santa Marta montane species. These nine species were
then placed in two different groups within
Eleutherodactylus (the ‘fitzingeri’ and ‘unistrigatus’
groups) by Lynch and Ruiz-Carranza (1985), albeit with
hesitation due to the presumed plesiomorphy of the
character states they studied (‘S’ condition of the m.
adductor mandibulae and unfused frontoparietals and
prootics) in the SNSM taxa. Regarding the interpretation
of plesiomorphy of the two-character states, this is due
to the fact that these authors based their character polar-
ization on use of a ‘strict outgroup’ method, whereby
any and all states found in the outgroup are excluded as
uninformative of relationships within the ingroup
(Lynch, 1997). On the basis of our results, all of the
‘eleutherodactyline’ frogs of the SNSM are closely
related, being placed in Serranobatrachus gen. nov. and
Tachiramantis (T. tayrona and Tachiramantis sp.).
Six of the putative synapomorphies are found in the

skull and one in the axial skeleton, as follows: (1) Alary
process of premaxilla terminating in inverted V-shape and
(2) directed posterodorsad. (3) Otic ramus of squamosal
shorter than zygomatic ramus and (4) separated from
posterolateral portion of prootic. (5) Crests present on
frontoparietals. (6) Sphenethmoid long, reaching or sur-
passing the anterior edge of the nasals in fully developed
adults. (7) Sacrum and presacral VIII fused (Fig. 7).
The alary process of the premaxilla is directed antero-

dorsad, dorsad, or posterodorsad in anurans (Lynch, 1971).
Lynch and Ruiz-Carranza (1985) described the alary pro-
cess for some of the SNSM species as slightly posterodor-
sad. Nevertheless, we found that the inclination of the
alary process is significant enough to be described as
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posterodorsal in all specimens of Serranobatrachus gen.
nov we examined (viz. S. carmelitae, S. cristinae, S. deli-
catus, S. insignitus, S. megalops, S. ruthveni, and S. sanc-
tamartae). Optimization of the orientation of the alary
process indicates it has evolved at least once in
Strabomantis (S. sulcatus) and in Serranobatrachus gen.
nov, and in Pristimantis at least twice when observed in
P. buckleyi (Boulenger, 1882) and in P. cryophilius
(Lynch, 1979). Pristimantis buckley is placed in the refor-
mulated Pristimantis devillei species group by Padial et al.
(2014) while P. cryophilius according to Padial et al.
(2014) is not assignable to any Pristimantis species group.

The length of the otic ramus of the squamosal, which
is shorter than the zygomatic ramus, is another character
shared by the species of Serranobatrachus gen. nov.
However, care must be taken with this character,
because the otic and zygomatic rami vary greatly and
can form a series of complex morphological transforma-
tions. The optimization of this character showed that
otic ramus of the squamosal shorter than zygomatic
ramus has at least three independent origins in terrara-
nas, in the Serranobatrachus gen. nov in Craugastor fit-
zingeri (Schmidt, 1857), C. longirostris (Boulenger,
1898), and in Strabomantis sulcatus (Cope, 1874).

Fig. 5. Optimal hypothesis of relationships of Nobleobatrachia showing Brachycephaloidea as monophyletic. Hemiphractidae is
recovered as the sister group of Brachycephaloidea. The tree is the strict consensus of 361 most parsimonious trees (MPTs; 81713
steps) showing minimum branch-lengths (derived from one of the MPTs) and all supported nodes labelled with Goodman-
Bremer values.

14 S. Arroyo et al.



Within Brachycephaloidea, cranial crests are recog-
nized as comprising an upturned lateral margin of the
frontoparietals (Lynch 1975, 1995). This structure has
been classified as prominent, massive, or low. Here we

focus only on the absence or presence of cranial crests
and not the variation in their morphology, such as
width, height, and position. Although the phylogeny is
incomplete, the optimization shows that a cranial crest

Fig. 6. Recent hypotheses of phylogenetic relationships among genera of Brachycephaloidea. (A) Tree alignment, phylogenetic
parsimony, this study. (B) Similarity alignment, maximum likelihood, Heinicke et al. (2018). (C) Tree alignment, phylogenetic
parsimony, Gonz�alez-Dur�an et al. (2017). (D) Similarity alignment, maximum likelihood, Heinicke et al. (2015). (E) Tree alignment,
phylogenetic parsimony, Padial et al. (2014). (F) similarity alignment, maximum likelihood, Pyron (2014). (G) Similarity alignment,
maximum likelihood, Canedo & Haddad (2012). (H) Similarity alignment, maximum likelihood, Hedges et al. (2008).
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has evolved at least twice in Strabomantis (S. necerus
[Lynch, 1975] in the S. biporcatus species series and S.
sulcatus in the S. cornutus species group), at least once
in Tachiramantis (T. douglasi), and in the most recent
common ancestor of Serranobatrachus. In the genus
Pristimantis a cranial crest is present in a variety of spe-
cies, including the P. devillei species group (present in
P. buckleyi [Boulenger, 1882], P. curtipes [Boulenger,
1882], P. devillei [Boulenger, 1880], P. duellmani
[Lynch, 1980b], P. gentry [Lynch & Duellman, 1997],
P. quinquagesimus [Lynch & Trueb, 1980], P. surdus
[Peters, 1863], P. thymalopsoides [Lynch, 1976], P.
truebae [Lynch & Duellman, 1997], and P. vertebralis

[Boulenger, 1886]). Cranial crests are also present in P.
thymelensis (Lynch, 1972), placed in the P. myersi spe-
cies group by Padial et al. (2014) but in our phylogeny
placed outside of other species assigned to P. myeri spe-
cies group by Padial et al. (2014), P. galdi (Jim�enez de
la Espada, 1870; see below), and in the following spe-
cies that are not assignable to a particular Pristimantis
species group according to Padial et al. (2014): P. cryo-
philius, P. spinosus (Lynch, 1979b), P. supernatis
(Lynch, 1979c).
We observed a large sphenethmoid extending past the

anterior edge of the nasals in Serranobatrachus gen.
nov. We did not observe this condition in any of the

Fig. 7. Putative synapomorphies of Serranobatrachus gen. nov. Dorsal views of skulls. (A) Serranobatrachus ruthveni (ICN 23282),
showing cranial crest on frontoparietals. (B) Tachiramantis douglasi (ICN 15526) frontoparietals bear small bony tubercles and
lateral margins of these with cranial crests, ornamentation is also seen along the dorsal edge of the squamosal. (C) Note fusion of the
sacrum and Presacral VIII in Serranobatrachus sanctamartae (ICN 13042). (D) Skull of Tachiramantis douglasi (ICN 15526),
presence of alary processes of the hyoid plate.
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other specimens examined (Appendix 1). Lynch (1989,
2003) proposed that a large sphenethmoid is a synapo-
morphy linking the species now assigned to the genus
Hypodactylus (H. adercus, H. latens, and H. nigrovitta-
tus) sensu Hedges et al. (2008).
Fusion of the sacrum and presacral vertebra VIII has

been considered a possible diagnostic character of sev-
eral groups of anurans (B�aez & Pugener, 2003; B�aez &
Trueb, 1997; Cannatella & Trueb, 1988; Lynch, 1973;
Noble, 1922; Tihen, 1960; Trueb, 1971). Joglar (1986)
was the first to detect the fusion of the sacrum and pre-
sacral VIII in terraranas, reporting it in some species of
the ‘Eleutherodactylus (Euhyas) ricordii’ species group
and two species of the ‘E. gollmeri species group’ (now
in Craugastor). Later, Lynch (2000) supported Joglar’s
(1986) results, reporting fusion of the sacrum and pre-
sacral VIII in the remaining five species allocated with
the ‘E. gollmeri’ species group and proposing this con-
dition as a synapomorphy for the species group, com-
posed of the following species: ‘E. chac’ (Savage,
1987), ‘E. daryi’ (Ford & Savage, 1984), ‘E. gollmeri’
(Peters, 1863), ‘E. greggi’ (Bumzahem, 1955), ‘E. lati-
ceps’ (Dumeril, 1853), ‘E. lineatus’ (Brocchi, 1879),
and ‘E. loki’ (Shannon & Werler, 1955). Hedges et al.
(2008) proposed the Craugastor laticeps species series
and placed most of the ‘Eleutherodactylus gollmeri’ spe-
cies group sensu Savage (1987) in it, except ‘E. daryi’,
which was placed in their new subgenus Campbellius
(Craugastor) on the basis of molecular evidence. Padial
et al. (2014) recovered the subgenus Campbellius as the
sister group of all other species of the genus
Craugastor, and because sequence data were not avail-
able for C. greggi (Bumzahem, 1955), this species was
considered unassigned to any particular group within
Craugastor. Furthermore, Padial et al. (2014) recovered
Craugastor chac, C. gollmeri, C. laticeps, C. lineatus,
C. mimus (Taylor, 1955), and C. noblei (Barbour &
Dunn, 1921) as a clade in their maximum likelihood
analysis, but they left them unassigned to any
Craugastor species group. None of the phylogenetic
studies of Craugastor subsequent to Lynch (2000)
included osteological characters, and there is no add-
itional information on the axial skeleton of Craugastor
species. Fusion of the sacrum and presacral VIII has
evolved twice independently in Craugastor, at least
once in Tachiramantis (T. douglasi), and in the most
recent common ancestor of Serranobatrachus gen. nov.
Serranobatrachus gen. nov. and Tachiramantis share

the presence of the alary processes of the hyoid (Fig.
7D). The alary process of the hyoid has also been
reported for other brachycephaloids, including
Craugastor augusti, C. fleischmanni (Boettger, 1892),
N. nigrovittata, and O. quixensis by Heyer (1975),

Geobatrachus walker by Ardila-Robayo (1979) and
Barycholos by Motta et al. (2021). Kaiser et al. (1994),
in their phylogenetic study of eastern Caribbean
‘Eleutherodactylus’, found that this alary process is also
present in C. fitzingeri, Eleutherodactylus amplinympha
(Kaiser et al., 1994), E. antillensis (Reinhardt & L€utken,
1862), E. barlagnei (Lynch, 1965), E. coqui (Thomas,
1965), E. johnstonei (Barbour, 1914), E. martinicensis
(Tschudi, 1838), and E. pinchoni (Schwartz, 1967),
whereas it is absent in Prisitmantis euphronides
(Schwartz, 1967), P. shrevei (Schwartz, 1967), and P.
urichi (Mole & Urich, 1894).
The absence of the alary process has also been reported

for P. huicundo (Guayasamin, 2004), P. obmutescens
(Lynch, 1980), P. orcesi (Lynch, 1972), P. ortizi
(Guayasamin, 2004), P. racemus (Lynch, 1980), P. simo-
teriscus (Lynch et al., 1996), P. simoterus (Lynch, 1980),
P. thymelensis (Lynch, 1972), and the Prisitmantis lepto-
lophus species group (P. acatallelus [Lynch & Ruiz-
Carranza, 1983], P. leptolophus [Lynch, 1980], P. lasal-
leorum [Lynch, 1995], P. maculosus [Lynch, 1991], P.
parectatus [Lynch & Rueda-Almonacid, 1998], P. scolo-
blepharus [Lynch, 1991], and P. uranobates [Lynch,
1991], present and absent in P. stictus [Gonz�alez-Dur�an,
2016]; Gonzalez-Duran et al., 2017). We also scored this
character for all available skeletons of Pristimantis depos-
ited at the ICN collection (Appendix 1) and found that
they also lack the alary process of the hyoid. Given the
widespread absence of the alary process in this genus, we
infer that this state is found in the most recent common
ancestor of the clade; however, osteological data for
related groups (especially Yunganastes, for which only the
cranium has been described for two species, Y. fraudator
and Y. pluvicanorus (De la Riva & Lynch, 1997)) are
required to determine if this shared absence is apomorphic
or plesiomorphic for Pristimantis. Nevertheless, additional
evidence is required to test this hypothesis, as we did not
study all recognized species groups within Pristimantis.

Content of the Pristimantis galdi and P.
lacrimosus species groups
The former ‘Eleutherodactylus galdi species group’ [¼
Pristimantis galdi species group, Hedges et al., 2008;
Padial et al., 2014] was recognized by Lynch (1996) to
accommodate those species that share bony tubercles
along the lateral edges of the frontoparietals (Fig. 7B)
and the dorsal edge of the zygomatic and otic rami of
the squamosal: Tachiramantis douglasi,
Serrranobatrachus delicatus, and Pristimantis galdi
(Jim�enez de la Espada, 1870). Lynch and Rueda-
Almonacid (1997) subsequently assigned P. tribulosus
to this group, suggesting that it was the sister species of
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P. galdi. According to our results, the P. galdi species
group should be restricted to P. galdi and P. tribulosus.
Pristimantis tayrona, previously part of the P. lacrimo-
sus species group, is now referred to Tachiramantis. No
other species here transferred from Pristimantis to
Serranobatrachus or Tachiramantis was previously
assigned to any Pristimantis species group, so no further
reformulation of the groups is needed.

Biogeography
Serranobatrachus gen. nov. and Tachiramantis are eco-
logically diverse within an apparent restricted geo-
graphic range. Serranobatrachus gen. nov. is endemic to
the SNSM, while Tachiramantis is distributed along the
northern part of the Cordillera Oriental, Serran�ıa de
Perij�a, SNSM, and Serran�ıa de M�erida. The number of
SNSM endemic species varies across vertebrate groups,
with 17 amphibians, 12 reptiles, 14 birds, and 1 mam-
mal (UAESPNN, 2005); however, the number of SNSM
endemics might be considerably underestimated due to
insufficient knowledge of the systematics of these
groups (Cadena et al., 2016).
Basic aspects of the origins of the SNSM flora and

fauna remain poorly understood. Alexander Ruthven
(1915, 1917, 1922) was the first to study the amphibians
and reptiles of the SNSM. In the light of those studies,
Rivero (1972) and Walker and Test (1955) proposed
that SNSM anurans had similarities with the fauna of
the Cordillera de la Costa of Venezuela. Lynch (1976)
hypothesized affinities between the anuran faunas of the
Antilles and the SNSM, but that was rejected by Lynch
and Ruiz-Carranza (1985) who proposed a connection
between the Colombian Andes and the SNSM. Later,
Lynch (1996) provided the first cladistic evidence of a
biogeographic connection between the SNSM and the
Cordillera Oriental, proposing T. douglasi (Cordillera
Oriental) and S. delicatus (SNSM) as sister species on
the basis of the shared fusion of the sacrum and presac-
ral VIII. Guayasamin et al. (2009) found the monotypic
genus of glassfrogs, Ikakogi Guayasamin et al., 2009
endemic to the SNSM, to be the sister taxon of all other
Centroleninae. Subsequently, Castroviejo-Fisher et al.
(2014) suggest that the first split within Centrolenidae,
isolating Ikakogi tayrona (Ruiz-Carranza & Lynch,
1991) from the clade containing all other glassfrogs,
occurred during the Oligocene when the Cordillera
Central and Cordillera Oriental experienced uplifts,
probably facilitating the early colonization/vicariance of
a proto-Sierra Nevada de Santa Marta. These authors
also proposed that isolation of the SNSM from other
mountain ranges was a plausible explanation for the
monotypic genus in the SNSM, although they also

deemed that extinctions and undiscovered species cannot
be dismissed. Similarly, Grant et al. (2017) found that
the SNSM endemic ‘Colostethus’ ruthveni group, com-
posed of ‘C.’ ruthveni and an undescribed species, is
sister to the widespread clade Dendrobatini, although
they did not speculate about possible biogeo-
graphic causes.
Our phylogenetic analysis revealed a close relation-

ship between the species occurring in the SNSM,
Serran�ıa de Perij�a, and Cordillera Oriental of Colombia.
Phylogenetic studies of other taxa have also found this
biogeographic relationship. Benham et al. (2015) exam-
ined geographic and temporal patterns of diversification
in Metallura Gould, 1848 hummingbirds and found a
clade in which species of the Cordillera Oriental are sis-
ter to SNSM species, which together are the sister taxon
of a clade composed of Serran�ıa de Perij�a species, all of
which together are sister to a clade containing species
from Cordillera de la Costa and Merida Andes.
Recently, S�anchez-Pacheco et al. (2018) proposed
another biogeographic relationship for the lizards of the
genus Oreosaurus Boettger, 1891, finding that that
Oreosaurus species from the SNSM are most closely
related to a clade composed of species in the
Venezuelan Coastal Range, Trinidad, and the tepuis.
In summary, two general biogeographic scenarios are

currently supported for the SNSM vertebrate fauna: (1)
biogeographic connections between the SNSM and the
Andes of Colombia and the Serran�ıa de Perij�a and (2) a
connection between the SNSM and the north-eastern
portion of the Andes (Venezuelan Coastal Range).
However, caution should be employed when generaliz-
ing these scenarios to other groups, given that the diver-
sity and relationships of most of the SNSM vertebrate
fauna remain poorly understood.

Acknowledgements
LARS is grateful to the students of the Herpetology
group from Universidad del Magdalena (Los Frolegts),
Fundaci�on Atelopus, the administrators of the Sierra
Nevada of Santa Marta Natural National Park (PNN,
Caribbean territorial), and especially ‘los serranos’
(peasants and indigenous people) who have supported
his research in the Sierra Nevada de Santa Marta. We
thank Liliana Saboy�a for all her logistical support in
making the July 2013 expedition to the SNSM a
success, and we are grateful to Santiago Castroviejo-
Fisher, David Gower, and an anonymous reviewer for
their comments and their constructive criticism, all of
which greatly improved the manuscript. Collection of
amphibians in Colombia was authorized by the
Ministerio de Ambiente, Vivienda y Desarrollo

18 S. Arroyo et al.



Territorial of Colombia and Corporaci�on Aut�onoma
Regional del Magdalena (Resoluci�on 0425 de 2015

Disclosure statement
No potential conflict of interest was reported by
the author(s).

Supplemental material
Supplemental material for this article can be accessed
here: http://dx.doi.org/10.1080/14772000.2022.2123865.

Funding
Funding for this research was provided by the Conselho
Nacional de Desenvolvimento Cient�ıfico e Tecnol�ogico
(CNPq Procs. 305234/2014-5, 306823/2017-9),
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