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Chemical signalling is an essential component of the communication system of lizards, and epidermal glands are
responsible for producing semiochemicals that regulate many behavioural interactions. Two types of epidermal glands
have been previously described for lizards: follicular and generation glands. Generation glands are characterized by
the aggregation of novel glandular cell types in the epithelium and the lack of a lumen or external pore. Despite
the fact that several subtypes of generation glands have been recognized over the years, the morphology, taxonomic
distribution, function and evolutionary origins of generation glands remain nearly unexplored in Neotropical clades.
Here, we describe a novel escutcheon-type generation gland (‘a-gland’) for lizards of the South American family
Tropiduridae, characterize its structural and ultrastructural organization, and study the homology of the constituent
parts in a phylogenetic framework. The a-glands emerged in the ancestor of Eurolophosaurus, Plica, Strobilurus,
Tropidurus and Uracentron, and are found in at least 39 species with diverse ecological habits. We preliminarily
analysed the protein profile of a-glands and discovered differential expression of protein components between sexes.
Our investigations change the general view about epidermal gland homology, leading us to argue that generation and
follicular glands are possibly more closely related functionally and evolutionarily than previously thought.

ADDITIONAL KEYWORDS: chemical communication — chemical signalling — generation glands — homology —
Iguania — South American collared lizards — squamate skin — Tropiduridae — Tropidurinae.

INTRODUCTION systems of lizards, worm lizards and snakes (Baeckens
et al., 2017a; Garcia-Roa et al., 2017a). Whereas
squamates can release chemical cues to the exterior
environment through simple mechanisms (e.g.
faeces or skin), epidermal glands are exceptionally
important for chemical signalling because the blends
of semiochemicals they produce control essential
behavioural interactions, including species and
individual recognition (Cooper & Vitt, 1987; Alberts &
Werner, 1993; Cooper et al., 1999; Aragon et al., 2001a,
2001b; Barbosa et al., 2006; Carazo et al., 2008; Gabirot
et al., 2010, 2012), establishment of social hierarchies
(Mason, 1992; Mason & Parker, 2010; Martin & Lopez,
2011), territoriality (Mason & Parker, 2010) and
*Corresponding author. E-mail: andreluizherpeto@gmail.com intersexual selection (Martin & Lépez, 2006a, 2006b,

Animal communication systems have evolved
an extraordinarily varied set of structures and
signals. Among squamate reptiles, communication
is established through complex visual, acoustic and
chemical signalling modes that allow for a diverse
behavioural repertoire (Greenfield, 2002; Houck, 2009;
Bro-Jgrgensen, 2010; Apps et al., 2015). In recent years,
there has been a growing number of studies showing
that chemical signalling is often a critical — yet
underappreciated — component of the communication
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2012, 2013a, 2013b; Johansson & Jones, 2007), not to
mention their contribution to reproductive isolation
and speciation (Gabirot et al., 2012; Zozaya et al., 2019).

To date, two major types of epidermal glands have
been described in squamates, both with a holocrine
mode of secretion (Maderson, 1972; Figs 1, 2): (1)
follicular and (2) generation glands. Gabe & Saint-
Girons (1965) includes a review of earlier works
covering morphological and functional aspects of
epidermal glands, and these authors explain that
the epidermal glands treated here as ‘follicular

glands’ (sensu Mayerl et al., 2015) were originally
noted as ‘puncta callosa’ by Linnaeus (1758) but
only characterized histologically more than a
century later by Leydig (1872). Gabe & Saint-Girons
(1965) also attributed the original description of
generation glands to T6lg (1905), although thorough
characterizations have only been provided more
recently (e.g. Taylor & Leonard, 1956; Maderson,
1967a,1967b; Van Wyk & Mouton, 1992; Dujsebayeva,
1998; Dujsebayeva et al., 2007, 2009; Mouton et al.,
2010, 2014).
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Figure 1. Phylogenetic distribution of major epidermal gland types in lizards. Multiple instances of independent evolution
are supported for each gland type (i.e. follicular and generation glands). The topology shown is a pruned version of Pyron
et al.’s (2013) squamate tree. Images of the external appearance and histological profile of the epidermal glands are from
Cordylus niger Cuvier, 1829 and Smaug giganteus (Smith, 1844), respectively (images by J. H. van Wyk).

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2020, XX, 1-30

020z Jequieos 9z uo 1senb Aq 69£8109/01 | BB|Z/UBBUUII00Z/SE0 | 0 | /I0P/3]01E-80UBAPE/UBBUUII00Z/WO dNODlWapede//:sdyy Wwolj pepeojumoq



THE NOVEL EPIDERMAL o-GLAND IN LIZARDS 3

Glandular products exposed on top of the outer
beta-layer through oberhautchen discontinuities

Unspecializaed Squamate Skin

1A/ Oberhautchen
Quter - Beta layer
Epidermal
: Mesos layer
Generation " Alpha layer
I Lacunar Iayer
Clear lay
Inner ]
Epidermal Beta layer
Generation . Mesos layer
——— Alpha layer
W Stratum geminativum

Follicular Gland

B-glands

» Generation Glands »
3 Oberhautchen

Y

Escutcheon Glands

Plug

Glandular products exposed above
the oberhautchen of the new outer
generation after skin shedding

Glandular products
form a secretion plug

a-gland

>

INCREASED COMPLEXITY OF EPIDERMAL STRUCTURES

Figure 2. Histological structure of unspecialized skin and epidermal glands. Diagrammatic representation of the
unspecialized squamate skin and major epidermal gland types, illustrating their respective secretion mechanisms as

hypothesized by Maderson (1972).

Follicular glands are invaginated tubular or
follicular units that are both morphologically and
chronologically independent of the undifferentiated
body epidermis around them. The protein- and
lipid-rich, waxy products of these glands are stored
extracellularly in a lumen as a solid secretion plug and
released to the exterior through a pore located in the
pre-cloacal, posterior abdominal and/or femoral region
(Maderson, 1972).

Generation glands consist of aggregations of one
or more novel cell types embedded in an otherwise
undifferentiated six-layered epithelium. Unlike
follicular glands, generation glands lack a lumen
and are not associated with an external pore, and
the differentiation of their products and subsequent
exposure to the exterior environment are reliant upon
a modification of the topography of the epidermal
generation and/or a localized alteration of the
shedding process (Maderson, 1967; 1972; Fig. 2).

While follicular glands are found in ~25% of all non-
ophidian squamates (Mayerl et al., 2015; Garcia-Roa
et al.,2017a), generation glands are restricted to fewer
lizard groups [viz., geckos (Maderson, 1967; Maderson
& Chiu, 1970), cordylids (Van Wyk & Mouton, 1992;
Moutonetal.,2010,2014), agamids (Dujsebayeva, 1998;
Dujsebayeva et al., 2007) and oplurids (Dujsebayeva
et al., 2009); see Table 1 for more details]. However,
we should not be surprised if, in the near future,
novel generation gland types are discovered in other
lizard clades, especially in the Neotropics. The results
summarized in this paper provide clear evidence
of that.

Although follicular glands have been considered
to be more specialized and are assumed to have
evolved from the more ‘primitive’ generation glands
(Maderson & Chiu, 1970; Figs 2, 3), the evolutionary
relationships between these gland types, if any, is
uncertain. Thus far, only two types of generation
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THE NOVEL EPIDERMAL a-GLAND IN LIZARDS 5

glands, escutcheon glands and -glands, have been
described in detail, and they differ essentially with
regard to where the secretory material is synthesized
and accumulated (Fig. 2). In geckos, escutcheon glands
secrete material derived from a novel cell type that
lies between the lacunar and the clear layer of the
outer epidermal generation, whereas in 3-glands,
secretions derive from an extra cell type resting
directly on cells of the $-layer of the inner generation
(Maderson, 1967, 1972). After shedding is complete,
gland products of escutcheon glands are exposed
above the Oberhdutchen of the now outer epidermal
generation. In B-glands, such products lie on top of the
outer pB-layer and are exposed through Oberhdutchen
discontinuities (Fig. 2). The callous scales of agamid
and oplurid lizards have been identified as a type of
escutcheon gland, but their fine morphoanatomical
organization and chemical secretions are still poorly
understood (Baig & Bohme, 1991; Dujsebayeva, 1998;
Dujsebayeva et al., 2007, 2009).

Male lizards in the subfamily Tropidurinae
(Tropiduridae) are known to possess flash marks
(sensu Frost, 1992) on the underside of thighs, pre-
cloacal flap, mid-venter, posterior venter and/or base
of tail, with single species bearing up to five different
sections of their ventral surface covered with these
marks (Frost, 1992; Fig. 4). Flash marks have been
recognized as important systematic characters for
classifying tropidurines (e.g. Etheridge, 1968; 1970;
Rodrigues, 1987; Frost, 1992; Alvarez et al., 1994;
Avila-Pires, 1995; Frost et al., 1998, 2001; Harvey
& Gutberlet, 1998, 2000; Carvalho, 2016; Carvalho
et al., 2016, 2018), yet their morphological structure
and function remain uninvestigated. Alexander
& Maderson (1972) suggested the occurrence of a
glandular epithelium beneath the flash marks of
tropidurines, but no histological evidence has been
provided to support this claim. Here, we report on
the discovery of a novel epidermal glandular tissue
underneath the flash marks of tropidurine lizards.

Tropidurines are sedentary, territorial, visually
oriented, sit-and-wait foragers with a complex system
of visual signalling that take part in territoriality
(Carpenter, 1977; Kohlsdorf et al., 2006; Coelho et al.,
2018), dominance (Carpenter, 1977; Coelho et al., 2018;
Bruinjé et al., 2019), mating displays (Carpenter, 1977;
Pelegrin, 2019; Vasconcelos et al., 2019) and both
intra- and interspecific recognition (Watkins, 1997,
Clark et al., 2015; 2016; Bruinjé et al., 2018). These
traits, essentially plesiomorphic among iguanians
(Huey & Pianka, 1981; Pianka & Vitt, 2003; Vitt et al.,
2003; Vitt & Pianka, 2005), contrast with the non-
territorial, active, chemically oriented behaviour of
non-iguanian clades that comprise species with either
active or mixed foraging strategies (i.e. Anguimorpha,

References
16,17, 18

16
19
1

1
1
1
1

Callous scales

B-type

Escutcheon

X#

Generation gland

Absent

Genus
Xantusia
Laudakia
Paralaudakia
Dipsosaurus
Leiocephalus
ma
Oplurus
Anolis

Phrynosomatidae

Leiocephalidae
Opluridae

Xantusiidae
Agamidae
Iguanidae
Dactyloidae

Family
1971; 10, Mouton et al., 2014; 11, van Wyk & Mouton, 1992; 12, Louw e¢ al., 2011; 13, Mouton et al., 2010; 14, Mouton et al., 1998; 15, Toit et al., 2005; 16, Baig & Bshme, 1991; 17, Dujsebayeva, 1998;

18, Dujsebayeva et al., 2007; 19, Dujsebayeva et al., 2009.

*Presumptive generation gland.

References: 1, Maderson, 1970; 2, Maderson & Chiu, 1970; 3, Maderson, 1968b; 4, Maderson, 1972; 5, Maderson, 1967; 6, Chiu & Maderson, 1975; 7, Chiu et al., 1975; 8, Maderson, 1968a; 9, Maderson,

*Callous-like in appearance, but histological investigation confirmed the presence of epidermal generation glands of the escutcheon type.

"Protruding single-layer generation gland.
Protruding two-layer generation gland.

Table 1. Continued

Iguania
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W A Undifferentiated skin/scales
_ B Formation of specialized glandular regions

Hyperplasia or other modification of part(s) of the outer generation
W C Holocrine secretory system with well-devolped generation glands
W -~ D One (or more) lines of scales develop larger generation glands

E Loss of synchrony of germinal activity and departure from the normal

pattern of generation differentiation within glandular enlarged units
W F Eiimination of generation glands as functional holocrine units
W G Only follicular epidermal glands persist

Figure 3. Maderson & Chiu’s (1970) model of epidermal gland evolution. Steps of the model are briefly described in items

A-G.

Lacertoidea, Scincoidea and Gekkota; Pianka & Vitt,
2003). It has been long assumed that lizards that
adopt a sit-and-wait predatory feeding strategy rely
primarily on visual cues, while active foragers would
predominantly use chemical information (Baeckens
et al., 2017b). However, paradoxically, iguanians
double non-iguanians in the frequency of epidermal
glands, which challenges the longstanding view that
iguanians are visually oriented while non-iguanian
squamates are chemically oriented (Garcia-Roa
et al., 2017a). This previous study (Garcia-Roa et al.,
2017a) focused solely on follicular glands, and thus
our understanding of chemical signalling in lizards is
expected to grow considerably as more information on
the nature and occurrence of generation glands across
groups becomes available.

To help bridge this gap, we tested the hypothesis that
the generation gland discovered among tropidurines
represents a novel glandular organ. We characterized
the structural and ultra-structural organization of
the tropidurine gland, homologized its constituent
parts and investigated its phylogenetic origin. We
also investigated its potential secretory mechanisms
and provided preliminary information about the
protein profile of the gland. An exhaustive comparison
of our results with published studies on epidermal
glands of squamates, confirms that the skin patches

delineated by colourful flash marks in tropidurines
indeed correspond to a novel generation gland type.
A critical discussion of this finding and its impacts
on previous views about epidermal gland homology
is included. We argue that generation and follicular
glands are possibly more closely related functionally
and evolutionarily than previously thought.

MATERIAL AND METHODS

STRUCTURAL AND HISTOCHEMICAL ANALYSES

We sampled 11 adult male and three adult female
lizards representing six tropidurid species from three
distinct genera that differ with respect to the presence,
location and/or coloration of flash marks (Table 2).
In addition to sampling epithelial fragments from
areas delineated by flash marks, we collected tissue
samples for histological and histochemical analyses
from the dorsum and underside of the humeral region
of most specimens as negative topological controls,
since these regions lack flash marks. To allow for
proper intersexual comparisons, we collected skin
fragments from the same areas in both males and
females of three out of the five species analysed. To
test for the coincident occurrence of flash marks and
specialized glandular epithelia, we compared the

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2020, XX, 1-30
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THE NOVEL EPIDERMAL a-GLAND IN LIZARDS 7
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Figure 4. Ventral view of (A) a male Tropidurus chromatops Harvey & Gutberlet, 1998 (MHNC-R 3018) from ~30 km W
Florida, Santa Cruz, Bolivia, (B) a male T. melanopleurus Boulenger, 1902 (IBIGEO-R 5331) from Aguas Blancas, Salta,
Argentina, (C) a female T. xanthochilus Harvey & Gutberlet, 1998 (MZUSP-R 106321) from Santo Antonio do Leverger, Mato
Grosso, Brazil, and (D) a male T. etheridgei Cei, 1982 (AMNH-R 176273) from Filadelfia, Boquerén, Paraguay, illustrating
the location and coloration of flash marks observed (or not) on the ventral body of tropidurines. Black squares in (A) indicate
body areas from which we collected skin samples for histological examination. In (D) the yellow coloration covering the
background of the black flash-marks of 7. etheridgei might either represent a transient ontogenetic state or an instance in

which a yellow background persists throughout life.

histological structure of samples collected from species
that possess flash marks to those of species that lack
these structures. In addition to tropidurine species,
interspecific comparisons included Stenocercus
caducus (Cope, 1862), a member of the subfamily
Stenocercinae, sister-group of Tropidurinae (Frost,
1992). In Stenocercinae, the absence of flash marks
is the dominant and likely plesiomorphic condition.
Patches of dark scales covering the underside of the
thigh are rare among stenocercines. Out of the 69
species currently allocated in Stenocercus Duméril
& Bibron, 1859 (Torres-Carvajal, 2007; Uetz, 2020),
dark femoral patches have been observed in S. chota
Torres-Carvajal (2000), S. chrysopygus Boulenger
(1900), S. ochoai Fritts (1972) and S. ornatus (Gray,
1845), but it remains uninvestigated whether these
species exhibit true flash marks similar to those found
in tropidurines or simply pigmented zones that bear
no association with a subjacent specialized glandular
epithelium.

Histological samples were taken from recently
collected specimens fixed in 10% unbuffered
formalin and preserved in 70% ethanol. We removed
skin fragments (~25 mm?) from the underside of
the humeral, femoral and pre-cloacal areas of the
individuals. Samples were dehydrated in an ascending

series of ethanol and embedded in historesin (Leica
Microsystems Nussloch GmbH, Nussloch/Heidelberg,
Germany), sectioned at 4.5 ym, and stained with
toluidine blue + basic fuchsin for general structural
description. We conducted histochemical staining
techniques, including periodic acid-Schiff (PAS) (with
haematoxylin used as a counterstain) (Bancroft &
Stevens, 1982) + alcian blue pH 2.5 (Bancroft, 1975)
for neutral and acid mucopolysaccharides, respectively,
and naphthol yellow and bromophenol blue for peptides
and proteins (Pearse, 1985). We analysed skin sections
using microscopes Zeiss Axio Vert.Al and Leica DM
1000, and cameras Canon EOS Rebel T7 and Leica
DFC 295.

TRANSMISSION ELECTRON MICROSCOPY (TEM)

For transmission electron microscopy (TEM), samples
were fixed overnight in a modified Karnovsky solution
(2.0% paraformaldehyde and 2.5% glutaraldehyde
in 0.1 mol/L sodium cacodylate buffer at pH 7.2;
Karnovsky, 1965). Following fixation, the material was
postfixed for 1 h in 1% osmium tetroxide (OsO,) in
buffer solution (0.1 mol/L sodium cacodylate at pH 7.2),
en bloc-stained in 1% uranyl acetate (UO,(CH,CO0),),
dehydrated in an ascending series of ethanol and
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embedded in epoxy resin. Ultrathin sections (70—
90 nm) were obtained using a Leica Ultracut UCT
Microtome (Leica, Illinois, USA), mounted on copper
slot-grids, contrasted with lead citrate per 10 min at
room temperature and observed using Zeiss EM 900
(Karl Zeiss, Oberkochen, Germany) and JEOL JEM-
1400 plus (JEOL, Tokyo, Japan) transmission electron
microscopes.

PROTEIN ANALYSIS

For protein composition analysis, we collected skin
samples from areas delineated by dark-pigmented
flash-marks on the femoral region and unpigmented
skin from the humeral region of two adult males of
Tropidurus catalanensis Gudynas & Skuk, 1983.
Unpigmented skin fragments from both areas were
also collected from one adult female of the same
species (Table 2). Samples were frozen at —80 °C for
1 h and 30 min, macerated and kept in 1.5 mL of
80% acetronitrile 0.05% trifluoroacetic acid at —20 °C
overnight. We vacuum-dried each sample (Speed-
Vac Savant), resuspended them in 1 mL of ultrapure
water and determined the amount of total protein,
following the A205 custom method for protein and
peptide quantification of the NanoDrop 2000C
(Desjardins et al., 2009). To determine the pattern,
size and relative concentration of protein components,
we employed a 15% sodium dodecyl sulphate (SDS)
polyacrylamide gel (Laemmli, 1970). We added
100 pg of total protein to each well and employed two
molecular weight standards (SeeBlue and a homemade
one with lysozyme 14.2 KDa) to determine the size
of the bands. Electrophoresis run was performed
at a constant of 120 V for approximately 2 h. After
finishing electrophoresis, the gel was stained with
silver nitrate following a modified version of Bassam
et al.’s (1991) method. We accelerated the reaction time
at each step of the protocol by microwaving the gel in a
buffer solution (each step = 90 s in total). The obtained
banding patterns were compared qualitatively among
and within individuals using the program PyElph
v.1.4 (Pavel & Vasile, 2012).

PHYLOGENETIC RECONSTRUCTION OF
ANCESTRAL STATE

Ancestral state reconstructions were performed using a
novel phylogenetic hypothesis produced for tropidurids.
We followed the same laboratory and analytical
procedures outlined in Carvalho et al. (2016, 2018) to
generate, manipulate and phylogenetically analyse
sequence data primarily produced and obtained from
Genbank. In total, we analysed sequence data from
43 samples, representing species from all currently

valid tropidurid genera (sensu Frost et al., 2001), plus
one sample of the agamid Agama agama (Linnaeus,
1758), chosen to root the phylogenetic trees produced.
A full list of tissue samples analysed, respective voucher
specimens and Genbank accession numbers are provided
in Supporting Information, Appendix S1. We analysed
sequence data from four mitochondrial (12S, 16S,
COl, Cytb) and six nuclear loci (BACH1, kif24, NTF3,
PRLR, PTPN, SNCAIP). Alignments were performed in
MAFFT v.7 (Katoh & Toh, 2008) and concatenated in
Sequence Matrix v.1.8 (Vaidya et al., 2011). We employed
PartitionFinder v.2.1.1 (Lanfear et al., 2012) to select
the best-fit nucleotide substitution models and data-
partition schemes and performed tree searches in GARLI
v.2.1 (Zwickl, 2006). Our best tree search was based on
100 replicates and the relative support of the clades
was assessed through 1000 non-parametric bootstrap
replicates (Felsenstein, 2004). We plotted bootstrap
values over our best phylogenetic tree using SumTrees
(Sukumaran & Holder, 2010). The general profile of
our molecular dataset and the nucleotide models and
partition schemes selected by PartitionFinder 2 are
summarized in Supporting Information, Appendix S2.
The molecular matrix analysed in this study (nexus
format) and the novel phylogenetic tree produced for
tropidurids (with bootstrap support values associated
to nodes) are provided in Supporting Information,
Appendices S3 and S4.

For reconstruction of ancestral states, ecological
data on habitat use and morphological data relative
to the presence, location and coloration of epidermal
gland sites of tropidurids were either obtained from
preserved specimens, the literature or based on field
observations. Character states assigned to each species
are detailed in Table 3. To infer the phylogenetic
origins of a-glands, we scored the absence or presence
of the glandular organ on the basis of its occurrence
in at least one body site. Optimizations of the absence
or presence of a-glands in different body sites were
also implemented. We optimized flash-mark coloration
using two colour categories, ‘black’ and ‘yellow’, since
a finer definition of character states would require
further investigation of the distribution and density
of chromatophore types in the lizards’ skin. In the few
cases where information on a-glands or flash marks
were unavailable for a given species, we applied ‘?’ to
that respective character (i.e. treated as missing data).
We defined a multistate character to summarize the
association of the lizards with up to four categories of
substrate: ground (bare soil or leaf litter), tree (trunk,
branches or hollows), rock (vertical rock surfaces
or rock outcrops) and sand (dunes and open sand).
We employed our novel phylogenetic hypothesis for
tropidurids to perform all phylogeny-based analyses
and adopted flash marks as a proxy for the presence
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Table 3. Continued

Source Ecology / Morphology

Flash mark / Generation gland location

Flash mark
coloration

Substrate

Habitat

Species

Tail

Mid-V  Post-V  Thigh Cloaca

Avila-Pires, 1995

Tree branches /

Uran. superciliosus Forest

Tree trunk

STENOCERCINAE
Stenocercus caducus

Torres-Carvajal, 2007; Teixeira et al., 2016

Leaf litter

Semideciduous

forest

* Mid-venter flash marks present in large adult males only.

" Flash marks may be present or absent, depending on the population.

Abbreviations: E., Eurolophosaurus; Mi., Microlophus; P, Plica; Post-V, posterior venter; Mid-V, mid venter; T., Tropidurus; Urac., Uracentron; Uran., Uranoscodon.

of epidermal glands. Reconstructions of ancestral
character states were carried out under maximum
parsimony, using the trace character history function
in MESQUITE v.3.61 (Maddison & Maddison, 2019).

RESULTS
FLASH MARKS

Our results confirm the occurrence of pigmented
flash-marks in at least two locations of the ventral
body of 39 species from four tropidurine genera
(sensu Frost et al., 2001), specifically the pre-cloacal
and femoral areas (Fig. 4). Table 3 summarizes
the taxonomic distribution of flash marks among
tropidurines. Different genera and species exhibit
flash marks with distinct colorations. The ‘yellow type’
comprises colour tones ranging from cream to yellow
or orangey and the ‘black type’ varies from black to
charcoal. Yellow flash-marks are observed in Plica
Gray, 1831, Tropidurus Wied, 1825 [gr. T. spinulosus
(Cope, 1862) and T. helenae (Manzani & Abe, 1990)]
and Strobilurus Wiegmann, 1834, whereas black flash-
marks are only found in Tropidurus [gr. T. bogerti
Roze, 1958, gr. T. semitaeniatus (Spix, 1825) and
gr. T. torquatus (Wied, 1820)]. Regardless of their
topological distribution and coloration, flash marks
are restricted to male lizards (Fig. 4). Subadult males
approaching sexual maturity exhibit pale-yellow
flash-marks that turn either yellow/orangey or black,
depending on the genus (or species group), after
reaching sexual maturity (the term ‘subadult’ is here
used to refer to male individuals whose flash marks
are not fully developed but that have a similar size to
smaller adults with fully developed flash marks from
the same population). Pale-yellow coloration can be
present in the background of the black flash-marks of
some species of the T! semitaeniatus and T. torquatus
species groups (Fig. 4D), but it is unclear whether this
coloration indicates a transient ontogenetic state or if
the yellowish background persists throughout life in
adult males of certain species with black flash-marks.

HisToLOGY

Samples collected from the pre-cloacal and femoral areas
of tropidurine males with flash marks differ histologically
from the rest of their body skin, the skin of females and the
skin of male specimens from species that lack flash marks
(Fig. 5A—C). Flash marks located in these areas delineate
specialized skin patches characterized by the occurrence
of a novel epidermal gland type, hereafter named ‘o-
gland’ (Fig. 5C, E-I). No histological specialization is
observed in skin areas that lack external evidence of
pigmented flash-marks in tropidurids (Fig. 5A, B, D).

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2020, XX, 1-30
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A P Unspecialized

scale \

100 pm
Unspecialized

Scale with
land
c a-g

Figure 5. A, unspecialized scales from the pre-cloacal flap of a male Stenocercus caducus IMZUSP-R 82815). B, unspecialized
scales from the femoral area of a female Tropidurus chromatops (MZUSP-R 106266). C, scales with a-glands from the
femoral area of male T. chromatops (MZUSP-R 106263). Note that f-keratin layers are not present in A and C because they
were lost during sample preparation. D, unspecialized scale (stage I) from the humeral region of a female T. chromatops
(MZUSP-R 106266). E, detail of a scale with a-gland (stage IV) from the femoral area of a male T. xanthochilus (MZUSP-R
106342). F, detail of a scale with a-gland (stage V) from the pre-cloacal flap of a male 7. xanthochilus (MZUSP-R 106342).
G, detail of a scale with a-gland (stage VI) from the femoral areal of a male 7. xanthochilus (MZUSP-R 106336). H, part of
the inner generation of an a-gland from the femoral area of a male Plica plica (MTR 18918) showing the glandular stratum
with a large number of secretory vesicles (indicated with an asterisk). I, part of the inner generation of the a-gland from
the femoral area of a male T. catalanensis (MZUSP-R 106470) with melanophores transferring melanin granules into
glandular cells and numerous melanin granules accumulated in their cytoplasm. J, glandular tissue of the outer generation

© 2020 The Linnean Society of London, Zoological Journal of the Linnean Society, 2020, XX, 1-30
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We are often able to recognize up to five strata in the
unspecialized epidermis covering the humeral region
of each species — from the inside out: the stratum
germinativum, the a-keratin layer, the mesos layer, the
p-keratin layer and the Oberh&utchen (Fig. 5D). We can
also observe the presence of a clear layer and a lacunar
layer lying right above the Oberh&utchen of the inner
generation of cells. The lacunar tissue is especially
conspicuous in the caudal hinge of the scales (Fig. 5D).
In this area, lacunar cells are larger than any other skin
cells forming the scales, irregular in shape, possess a
peripheral, chromophilic nucleus and a homogeneous
cytoplasm.

a-Glands are distinguished from the undifferentiated
squamate epithelium by exhibiting an additional
stratum of metabolically active columnar cells
responsible for the production of glandular secretions.
This unique glandular stratum is located between the
stratum germinativum and the lacunar layer of the
inner generation (Fig. 5H, I) and between the clear
layer and the lacunar layer of the outer generation
(Fig. 5E-G). It is composed of three to seven layers of
cells with a central or subcentral euchromatic nucleus.
Their cytoplasm is densely populated with secretory
vesicles (Fig. 5H). The a-keratin layer of a-glands
is formed by strata of progressively flattened cells
with increasing degrees of keratinization towards
the apical portion of the layer (Fig. 5H, I). A thin,
translucent mesos layer formed by a single row of flat
cells separates the a-keratin layer from the p-keratin
layer (Fig. 5E-G). The latter is formed by several strata
of dead cells that have lost their individual limits as
the keratinization process progressed, giving them
the appearance of a compact layer (Fig. 5E-G). The
apical limit of the 3-keratin layer is serrate in shape
(especially towards the scale hinge) and covered with
an apparently unornate Oberh&utchen (Fig. 5SE-G). The
inner and outer epidermal generations of a-glands have
the same general histological organization. However,
a conspicuous difference between them is that the
glandular stratum of the outer generation accumulates
large amounts of glandular products (Fig. 5J).

CHEMICAL PROFILE

The unspecialized epithelium of males and females
of all examined species stain positively for naphthol

yellow only in the p-keratin layer. In turn, a-gland
samples of males show positive responses to dyes,
especially in the glandular stratum and o-keratin
layer. The degree of staining of the columnar cells
of the glandular stratum increases considerably in
more advanced stages of the sloughing cycle (Fig. 5G,
J). The a-keratin layer of the inner generation shows
a positive response for PAS, and both the glandular
stratum and a-keratin layer stain positive for PAS
in the outer generation. In the first case, the positive
PAS signal marks o-keratin fibres, and in the second
it highlights, respectively, a-keratin fibres in the
a-keratin layer and neutral mucopolysaccharides
secretions in the mature glandular stratum of the
outer generation.

TRANSMISSION ELECTRON MICROSCOPY (TEM)

Ultrastructural observations of skin samples collected
from the femoral area of Tropidurus catalanensis
reveal a large number of intracellular vesicles in the
glandular stratum of a-glands (Fig. 6). We are able to
identify four different types of vesicles on the basis
of the electron lucency and aspects of their internal
material (Types V1-V4 in Fig. 6B-D). Type V1 is the
most electron lucent (nearly translucent) and has a
clear, smooth appearance. Type V2 shows a denser
content than Type V1 and also exhibits a smooth
appearance. Type V3 is the densest of all vesicles
and apparently smooth. Type V4 varies in electron
lucency, due to the presence of irregular granular
structures in the vesicle lumen. Agglomerations
of Golgi apparatuses exist in different parts of the
cells (Fig. 6D, E), amid a large number of vesicles.
Transmission electron microscopy observations alone
do not allow us to determine whether different vesicle
types store distinct secretory material or represent
stages of a same secretory cycle. Figure 5A shows a
density gradient of cellular material, with a gathering
of vesicles in the bottom layer of the glandular stratum
and a smooth transition to a less dense aggregation of
cellular structures in the apical region of the glandular
tissue. Autophagocytosis is observed, especially in the
apical layers of the glandular stratum (Fig. 6D-F),
promoting reorganization of the internal content of the
cells. Lysis of organelles generates more internal space
for accumulation of vesicles with secretory content.

of the scale shown in G, with glandular secretion accumulated in the mature layer. K, unspecialized scale (stage II) from
the femoral region of a female 7. chromatops (MZUSP-R 106276) showing iridophores in the apical portion of the dermis.
Figures A—F and H-I were stained with toluidine blue + basic fuchsin, G and J with periodic acid-Schiff + alcian blue, and
K with bromophenol blue. Legend: inner generation: sg, stratum germinativum; pgt, presumptive glandular tissue/stratum;
gti, glandular tissue/stratum; pai, presumptive o-layer; ai, a-layer; mi, mesos layer; pfii, presumptive (-keratin layer; i,
B-keratin layer; Obi, Oberhdutchen; outer generation: clo, clear layer; gto, glandular tissue/stratum; l¢o, lacunar tissue; ao,
a-layer; mo, mesos layer; o, f-keratin layer; Obo, Oberhdutchen; chromatophores: Ir, iridophores; Me, melanophores.
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a-layer

Glandular stratum

St. germinativum

Dermis

Figure 6. Transmission electron microscopy of the epithelium from the femoral area of Tropidurus catalanensis. A, general
view of the glandular epithelium showing major skin layers and abundance of vesicles inside glandular cells. B-G, magnified
view of glandular tissue showing: B, clusters of melanin granules and numerous vesicles; C, aggregations of four different
types of vesicles (V1,V2,V3 and V4); D, E, Golgi apparatuses amid secretory vesicles; F, autophagocytic events (arrowheads
indicate membrane projections); G, iridophores present in the apical portion of the dermis. Legend: Go, Golgi complex; Ir,
iridophore; Me, melanin granule; Nu, nucleus; V1, vesicles type 1; V2, vesicles type 2; V3, vesicles type 3; V4, vesicles type 4.

Autophagocytic activity is associated with vesicles V4,
whilst specific function and internal content of vesicles
V1-V3 remain unknown. Transmission electron
microscopy images confirm the lack of specialized
lumina or ducts for storage and secretion of glandular
products.

PROTEIN COMPOSITION

The total protein content and banding patterns (Fig. 7)
vary between samples in relation to their topological
origin and the sex of Tropidurus catalanensis

individuals. Both males exhibit a higher number and
also more intensely marked protein bands than the
female specimen examined. Only a small difference in
protein content is noticeable in the samples obtained
from the humeral and femoral regions of the female
specimen. In total, the female exhibits eight protein
bands varying between ~14 KDa and ~198 KDa. Of
those, six are present both in the humeral and femoral
regions, and each of these areas has only one exclusive
protein band with ~15 KDa and ~18 KDa, respectively.
The most intense protein band registered in the
female specimen has ~62 KDa and other bands are
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Figure 7. Protein banding pattern of humeral (unspecialized skin) and femoral (skin with a-glands in males; females lack
these glands completely) samples of one adult female (MZUSP-106467) and two adult males (male 1: MZUSP-106469 and

male 2: MZUSP-106470) of Tropidurus catalanensis.

not as conspicuously marked, indicating low amounts
of proteins. The ~40 KDa protein band, present both
in the humeral and femoral samples, is the only one
exclusively found in the female.

No evident qualitative differences are found between
samples collected from the same body site in males,
indicating that both individuals analysed have similar,
if not identical, protein profiles. The only noticeable
distinction is due to specimen MZUSP-R 106469
showing bands slightly more intense in the humeral
region and less intense bands in the femoral region, in
comparison to specimen MZUSP-R 106470. Each male
studied exhibits a total of 12 bands varying between
~3 KDa and ~198 KDa. In both of them, the two bands
adjacent to the ~49 KDa band plus the ~15 KDa band
are exclusively expressed in the humeral region, and
three intense bands with molecular weight lower than
~14 KDa and one with ~18 KDa are exclusively found
in the femoral (i.e. a-gland) area. Regardless of the
topological origin of the sample, males and females
exhibit six identical bands, meaning that most (six out
of eight) bands present in the female are shared with
males but only half of the bands present in males are
shared with the female (six out of 12).

PHYLOGENETIC ORIGINS AND TRANSFORMATIONS

Phylogenetic reconstructions of ancestral states are
shown in Figures 8 and 9. The origin of a-glands is

inferred at the node grouping Eurolophosaurus Frost
et al., 2001, Plica Gray, 1831, Strobilurus Wiegmann,
1834, Tropidurus Wied, 1825 and Uracentron Kaup,
1826. Consequently, the absence of these epidermal
organs in E. divaricatus (Rodrigues, 1986), P. umbra
(Linnaeus, 1758) and U. azureum (Linnaeus, 1758) are
reconstructed as a reversal event back to the ancestral
tropidurid condition. Regarding coloration, ancestral
state reconstructions reveal a relatively conserved
phylogenetic distribution of the yellow and black
flash-mark types. Parsimony reconstructions show no
apparent association between shifts in ecological habit
and the presence/absence of a-glands in tropidurines.
However, all events involving the secondary loss of
glandular structures are either associated to arboreal
(i.e. P. umbra and U. azureum) or psammophilous
(E. divaricatus) species, but never to rupicolous ones.
Femoral and pre-cloacal a-glands are the most
widespread phylogenetically and the only ones to
show fully congruent phylogenetic distribution,
with secondary losses in E. divaricatus, P. umbra
and U. azureum. a-Glands in other body regions are
not only less common, but prove to be more labile
phylogenetically. Mid-venter a-glands originated
twice in the T. torquatus species group and another
time in T. bogerti. Lower venter o-glands appear in
the ancestor of the Strobilurus + T. spinulosus species
group, with subsequent secondary loss in the later
clade. The evolution of a-glands at the base of the tail
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Figure 8. Ancestral state reconstructions of ecological and a-gland/flash mark related characters of tropidurid lizards.

occurred at least three times, appearing in T. bogerti,
in the ancestor of T. itambere Rodrigues, 1987 +
T. psammonastes Rodrigues et al., 1988 and, possibly,
in the ancestor of the T. spinulosus species group, with
subsequent secondary loss in that clade. Nonetheless,
parallel evolution of a-glands at the base of tail in
T. melanopleurus Boulenger, 1902 and T. callathelys
Harvey & Gutberlet, 1998 cannot be ruled out since
these events imply an equally parsimonious scenario.

DISCUSSION
A NOVEL GENERATION GLAND TYPE

Comparative analyses of tropidurine samples revealed
a novel escutcheon-type generation gland (sensu
Maderson, 1972), herein denominated ‘a-gland’. As
observed in other lizard clades that possess similar
gland forms, i.e. escutcheon glands of eublepharids
and sphaerodactylids (Maderson, 1967, 1968b, 1972;
Maderson & Chiu, 1970) and callous scales of agamids
(Baig & Bohme, 1991; Dujsebayeva, 1998; Dujsebayeva
et al.,2007) and oplurids (Dujsebayeva et al., 2009), the
glandular secretion of a-glands is produced and stored
in a multilayered stratum of cells that lies between the
lacunar and clear layer. As such, the novel tropidurine
gland is not to be confounded with the 3-type generation
gland of carphodactylids (Maderson, 1970; Maderson
& Chiu, 1970), diplodactylids (Maderson & Chiu,
1970), sphaerodactylids (Maderson, 1970; Maderson

& Chiu, 1970) and gekkonids (Maderson, 1968a, 1971;
Maderson & Chiu, 1970; Chiu & Maderson, 1975; Chiu
et al.,1975), whose secretions derive from an extra cell
type resting directly on cells of the B-layer of the inner
generation (Maderson, 1967, 1972). The histological
structure of a-glands is indeed remarkably similar to
that of the callous scales of oplurids (Dujsebayeva et al.,
2009) and agamids (Dujsebayeva, 1998; Dujsebayeva
et al., 2007). However, in none of our samples have we
identified the formation of a thick glandular deposit
that resembles the so-called ‘secretion plug’ observed
by Dujsebayeva, (1998) and Dujsebayeva et al., (2007)
in specimens of the agamid genus Paralaudakia Baig
etal., 2012.

The histological structure of a-glands is hardly
comparable to the presumptive generation glands of
gerrhosaurids, as no mature generations are observed
in those lizards. Curiously, Mouton et al. (2014) even
suggested that the epidermal glands of gerrhosaurids
should not be regarded as true generation glands.
These lizards possess a hypertrophied cellular mass
comparable to the hypertrophied basal layer plus
cellular mass containing presumptive and differential
B-layer cells described for generation glands in cordylids
(Van Wyk & Mouton, 1992; Van Wyk, 1997). In the same
manner, despite cordylids possessing true generation
glands, these are distinguished from o-glands by
exhibiting either a single mature generation (single-
layer stacked gland) or multiple glandular generations
(multiple-layer stacked gland) in which the glandular
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Figure 9. Ancestral state reconstructions of a-gland/flash mark related characters of tropidurid lizards.

secretion is produced in a modified p-layer of the inner
epidermal generation (Searby, 2002). Therefore, it is

clear that the glandular apparatus of a-glands is located
in a distinct stratum of cells. Although developmental

aspects of the glandular layer of tropidurines remain
to be studied in detail, our analysis showed that it is
unlikely to be related to p-layer cells and, as the skin
goes through multiple shedding cycles, it neither forms
a protruding single-layered gland nor accumulates
multiple generations forming a pit-like (i.e. glands
with sunken, multiple generations) or protruding
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multiple-layered gland characteristic of cordylids (Van
Wyk & Mouton, 1992; Mouton et al., 2010, 2014).

CELLULAR RELATIONSHIPS AND POSSIBLE
DEVELOPMENTAL ORIGINS

Aside from distinguishing the tropidurine type from
other escutcheon-type glands, we chose the term
‘a-gland’ to briefly convey our hypothesis that the
glandular stratum that makes up this novel gland
type is related to the lacunar and a-keratin layers,
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more than to other epidermal cell types, in terms of
both development and structure. Landmann (1986)
explained that the cell layers of the lacunar tissue relate
to immature a-keratin cells in at least three major ways:
they secrete mucous granules into the intercellular
space subjacent to the a-keratin layer; tight junctions
interconnect their lateral plasma membranes; and these
cells do not differentiate further during the sloughing
cycle. The glandular stratum of a-glands proved to
have similar characteristics, including the capacity to
synthesize mucous compounds and to establish tight
intercellular adhesion through desmosomes. The major
distinctions in relation to the lacunar layer are twofold:
the glandular stratum is composed of multiple layers
of cells with fairly consistent appearance, whereas the
lacunar tissue exhibits a variable number of cell layers
and cells with irregular shapes and sizes in different
section of the lizard scale, and perhaps more strikingly,
the glandular stratum of a-glands differentiates into a
storage layer during advanced stages of the sloughing
cycle. Such a deposit layer is formed through the
accumulation of large amounts of secretion products
and intensification of cell keratinization (o-keratin) in
the outer epidermal generation.

The differentiation of the glandular stratum of
a-glands into a storage layer in the outer epidermal
generation is particularly relevant if we take into
consideration that Maderson et al. (1970) showed
that the lacunar layer of desert-dwelling iguanian
species, like Dipsosaurus dorsalis (Baird & Girard,
1852) (Iguanidae) and Uma notata Baird, 1858
(Phrynosomatidae), keratinize in a manner similar
to the a-keratin layer. During the final stages of the
‘renewal phase’ (i.e. stages five to six of the sloughing
cycle), all nuclei degenerate in the lacunar (and clear)
layer cells, with the result that, at the time of skin
shedding, these innermost layers of the outer generation
become almost indistinguishable from the a-keratin
layer. And as previously shown in Flaxman et al. (1968),
complete keratinization of lacunar cells is similarly
observed during in vitro cultivation of lizard epidermis.
Conjointly, these observations indicate that the
differentiation and maturation of the glandular stratum
of a-glands relies on biochemical processes shared with
related cell types (i.e. a-keratin cells, lacunar and clear
layer cells) to form the secretion deposit layer. Further
investigation of the hypothesized relationships among
these cell types should shed light into the mechanisms
of histodifferentiation responsible for the evolution of
a-glands and their unexplored secretory machinery.

EPIDERMAL GLAND HOMOLOGY IN LIZARDS

Our findings reject some previous statements
concerning the homology of lizard epidermal

glands. The two major types of epidermal glands
found in lizards have been distinguished by the
fact that generation glands produce their secreted
material in association with periodic skin shedding,
whereas follicular glands are morphologically and
chronologically independent of the general body
epidermis (Maderson, 1972). This hitherto well-
established morphofunctional dichotomy (multilayered
generation glands of cordylids representing a likely
exception; Van Wyk & Mouton, 1992), coupled with the
observation that the undifferentiated lepidosaurian
epidermis exhibits characteristic synchrony of
germinal activity over the entire body surface, led
Maderson & Chiu (1970) to propose a transitional
model that assumes that generation glands are per
se less specialized structures and to hypothesize
that follicular glands derive from generation glands
(Figs 2, 3). Nevertheless, in a recent paper describing
a formerly unreported glandular cloacal organ from
phyllodactylid geckos of the genus Gymnodactylus
Spix, 1825, De-Lima et al. (2018) proposed an expanded
diagram summarizing the steps underlying the
evolution of major epidermal gland types, including
their novel posterior-proctodeal gland. According to
them, generation glands originated from an ancestral
dedifferentiation of the outer epidermal generation
that later developed a holocrine secretory function,
whereas follicular glands evolved independently from
a hypertrophied region of the stratum germinativum
and o-keratin layer, with posterior dedifferentiation in
active holocrine secretion cells. Their model assumes
that generation and follicular glands probably have
independent evolutionary origins, driven by specific
signalling of the epidermis on the inner and outer
epidermal generation layers.

Our results offer no support for De-Lima et al.’s
(2018) ideas. The production of glandular secretion
in o-glands is initiated in the glandular stratum of
the inner generation layer, and this glandular tissue
develops into a mature secretion deposit layer in the
outer generation layer. The secretory activity of the
glandular cells of the inner epidermal generation of
a-glands is confirmed by the presence of a massive
number of vesicles containing secretion products in
the cell cytoplasm (Figs 4, 5). We thus have no reason
to assume that the signalling mechanisms controlling
the secretory functions of glandular cells in the inner
generation layer are distinct from those responsible
for the secretory activities of the same glandular cells
in the outer generation layer. De-Lima et al. (2018)
considered all glandular scale-specific structures
relating to different body regions derived from the
outer epidermal generation layer as generation glands,
and assumed that generation and follicular glands
do not have the same tissue origin. Thereby, they
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neglected the fact that the inner and outer epidermal
generations of generation glands are nothing but
homologous replicates of the same glandular unit at
different developmental stages. Hence, generation
and follicular glands might indeed share a common
evolutionary origin, even though the structural
organization of these gland types is undoubtedly
distinct. Nevertheless, a critical issue that remains
completely obscure is how -type generation glands
originated, since their secretory layer is different from
that of other generation glands, i.e. not carried out by
a-keratin-producing cells.

SECRETION MECHANISMS

The topological co-occurrence of pigmented flash-marks
and o-glands in tropidurines indicates that flash marks
are a reliable proxy for the presence of glandular tissue.
Although the location of glands varies among genera
and species, these are restricted to the ventral side of
the body. This observation leads us to presume that the
release of secretory products is either facilitated by, or
conditioned to, contact with the substrate traversed by
the lizards. As a-glands are structurally comparable to
the escutcheon gland-types found in geckos, oplurids
and agamids, it is reasonable to hypothesize that their
secretory mechanisms are at some degree similar, if
not the same. Maderson (1967, 1972) proposed that
in geckos, escutcheon gland products are exposed
above the Oberhédutchen of the outer epidermal
generation after shedding is complete. His model
implied that the secretory activity of escutcheon glands
is morphologically and chronologically linked to the
shedding of the undifferentiated epidermis covering the
lizard body (Fig. 2). Sloughing of the outer epidermal
generation is seemingly indispensable for a-glands to
release their products to the external environment, be
it synchronized with the rest of the skin body or not.
This is because the keratinized cell layers that lie right
above the glandular deposit accumulated in their outer
epidermal generation lack any sort of fissures, cracks
or openings through which the liberation of gland
products could be facilitated. Surprisingly, among our
samples, all males that possessed a-glands exhibited
unspecialized skin (humeral area) and glandular sites
in different stages of the shedding cycle, indicating that
they might release their glandular products in a timing
independent of the body skin shedding, if not in a whole
different fashion.

Yet, as suggested by Searby (2002) for cordylid
generation glands, we considered the possibility that
glandular material could be alternatively released via
abrasion of the outer generation layer, in a similar
manner of transfer assumed for femoral glands (Jared
et al., 1999; Chamut et al., 2009; Martin & Loépez,
2011). Nonetheless, the absence of significant wear

and tear on the top histological layers of the glandular
samples we have analysed seems to indicate otherwise.
De Villiers et al. (2015) produced a fine histological
study to determine the mechanism through which
cordylids transfer generation gland secretion to the
environment and, despite the fact that they found
localized signs of abrasion in the outer gland surface
of all species analysed, these appeared to be minor.
These authors also insightfully noted that if abrasion
were to be the main mechanism of secretion dispersal,
cordylid species with single-layered glands would have
to control abrasion rate in order to prevent exposure
of the presumptive p-layer underneath. Although the
actual glandular stratum of a-glands is localized more
internally (i.e. between the lacunar and clear layers) in
comparison to cordylids, this problem is likely to affect
tropidurine species, especially those dwelling on hard,
consolidated substrates (e.g. rupicolous species).

The fact that the mechanisms of secretion transfer
of callous scales of agamid and oplurid lizards are also
unknown (Baig & Béhme, 1991; Dujsebayeva, 1998;
Dujsebayeva et al., 2007; 2009), reinforces our belief
that this is a truly challenging topic. Adding even
more complexity to the investigation of mechanisms
of epidermal gland secretion in lizards, Mouton et al.
(2014) proposed that glandular layers of cordylid
generation glands might function as reservoirs that
transfer liquid semiochemicals to the substrate
without the need of significant abrasion. They have
also considered the possibility that generation glands
do not transfer substances to the substrate at all, but
instead provide chemical signals directly from the
lizard’s body. Despite the structural evidence we have
gathered thus far indicating that sloughing, and not
abrasion of the skin, is the most probable mechanism
through which tropidurines transfer secretions to the
environment, we are presently unable to rule out the
alternative hypotheses raised by Mouton et al. (2014).
Further commenting on them would be speculative,
and for this reason we opt to resume our discussion of
this topic when additional evidence becomes available.

PROTEIN PROFILE AND FUNCTIONAL ASPECTS

Knowledge about the production and role of
semiochemicals in social interactions of lizards is
almost entirely based on analyses of follicular (i.e.
femoral) gland products (Mayerl et al., 2015). Several
studies have revealed that follicular gland secretions
are composed of both proteins and lipids (Alberts, 1990;
Martin & Lépez, 2000; Weldon et al., 2008). However,
as far as we are aware, information about the chemical
composition of generation gland products is available
for a single species, the South African sungazer,
Smaug giganteus (Smith, 1844) (Cordylidae), albeit
restricted to lipophilic compounds (Louw et al., 2011).
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Consequently, comparisons of the protein profile
of a-glands can only be performed in reference to
follicular gland products.

The handful of studies that characterized the
spectrum of proteins produced by follicular glands of
conspecifics of the same lizard population, identified
unique chemical profiles that suggested their role as
semiochemicals (Alberts, 1991; Alberts & Werner, 1993;
Alberts et al., 1993; Mangiacotti et al., 2017, 2019a). In
parallel, behavioural experiments have corroborated
this idea by demonstrating that lizards are in fact
able to detect the protein fraction of follicular gland
secretions and use this information to recognize
unfamiliar conspecifics (Alberts, 1992; Alberts &
Werner, 1993; Alberts et al., 1993; Mangiacotti et al.,
2019b), distinguish sexes (Alberts et al., 1993),
intraspecific communication (Mangiacotti et al., 2020)
and assess a plethora of social contexts (Alberts, 1992;
Alberts & Werner, 1993). In agreement with these
previous findings involving follicular gland products,
the comparative analysis of the protein mass spectra
of epidermal samples of Tropidurus catalanensis
revealed conspicuous differential expression of
protein components between sexes. Males of this
species exhibited more intense protein bands, almost
double the number of protein bands identified in the
female, and showed nine exclusive bands (four of
them only found in a-gland sites), whilst the female
had only one that was not identified in males. These
striking differences indicate more intense and diverse
production of proteins in the male skin, and especially
in a-glands sites, which are entirely absent in females.
Coupled with the fact that male tropidurids are
typically polygynous (Van Sluys, 1997; Wiederhecker
et al., 2003; Pinto et al., 2005; Melo et al., 2017), socially
dominant (Carpenter, 1977; Coelho et al., 2018; Bruinjé
et al., 2019) and maintain harems composed of several
females (Van Sluys, 1997; Wiederhecker et al., 2003;
Kohlsdorf et al., 2006; Melo et al., 2017), makes us
hypothesize that a-gland proteins might indeed play a
role in intersexual recognition and perhaps contribute
either directly or indirectly to the establishment of
male dominance and territoriality.

Variability in the protein composition of follicular
gland products of conspecifics is known to make them
suitable to be used as chemical signals of individual
identity (Alberts et al., 1993; Mangiacotti et al., 2017).
Interestingly, recent studies have also demonstrated
that the chemical composition of the follicular gland
secretions is influenced by genetic (Gabirot et al.,
2012; Martin et al., 2016) and ecological factors, such
as environmental conditions (Martin & Lépez, 2013b;
Baeckens et al., 2017b), diet (Martin & Lépez, 2006a;
Garcia-Roa et al., 2017b) and climate (Baeckens
et al., 2017b). It is actually uncommon to find two
individuals in a given population with the same

protein composition of their epidermal gland secretions
(Alberts et al., 1993; Weldon et al., 2008; Mangiacotti
et al., 2017). For instance, proteins produced by
follicular glands are, in general, so diverse that only
two out of 29 male European wall lizards Podarcis
muralis (Laurenti, 1768) (Lacertidae), sampled by
Mangiacotti et al. (2017), possessed the same banding
scheme. That being so, we noticed with great surprise
that no apparent variability was present in the protein
profile of male T. catalanensis, despite the fact that the
total number of protein bands extracted from both
individuals analysed fell within the range described
for epidermal gland secretions of male lizards from
distantly related families [i.e. seven to 15 bands
reported by Alberts (1991) and Mangiacotti et al.
(2017)]. However, we cannot disregard the possibility
that the absence of variability could be artefactual,
as protein bands with similar molecular weights may
not be chemically identical or even homologous. As a
consequence, certain proteins might have been masked
during comparisons of traditional electrophoretic
profiles. Furthermore, because our sample size is
small, we cannot rule out the possibility that other
proteins are present in the population. Additional
sampling of specimens and employment of analytical
methods capable of distinguishing ‘hidden proteins’
(e.g. two-dimensional protein electrophoresis and
comparative transcriptomics) are expected to greatly
enhance following assessments of the diversity and
function of a-gland proteins.

PHYLOGENETIC ORIGINS AND TRANSFORMATIONS

Mapping the distribution of a-glands on to the
tropidurid phylogenetic tree, we produced a hypothesis
of character transformation that supports a single
evolutionary origin for a-glands. However, a-glands
are not inferred as a synapomorphy of tropidurines;
they support a more inclusive group that contains
Eurolophosaurus, Plica, Strobilurus, Tropidurus
and Uracentron. These specialized epidermal organs
emerged in a clade whose ancestor lacked epidermal
glands of any kind, implying that their absence
corresponds to the ancestral tropidurid condition. The
inferred scheme of character transformation (Fig. 8)
fits steps A through C of Maderson & Chiu’s (1970)
model of epidermal gland evolution, which suggests
that generation glands derive from modifications of
unspecialized scales (Fig. 3). Alas, because cordylids
are the only other group investigated phylogenetically
with respect to the origin and morphological
transformation of epidermal glands [but see Kluge
(1987) for information on the distribution of - and
escutcheon-type generation glands in Gekkonoideal],
we are unable to determine whether the case of
tropidurines (i.e. evolution of generation glands from
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unspecialized scales) represents the general rule
among lizards. All we know is that in what concerns
the evolution of generation glands, tropidurines and
cordylids followed utterly different paths. This is
because the cordylid p-glands likely derived from a
primitive gland-type similar in structure to the gland
found in its sister family, the gerrhosaurids (Mouton
et al., 2014), rather than from unspecialized scales as
observed in tropidurines.

Our results suggest a fairly conserved phylogenetic
history for a-glands. Apparent phylogenetic inertia
(sensu Shanahan, 2011) is first implied by the fact
that only two secondary loss events were observed
throughout the tropidurine phylogeny, and, second,
by the fact that the morphology of the glands
remained mostly unchanged at the histological level
across all genera analysed. Most transformations
recognized thus far seem to have affected the number
and location of glandular patches, rather than the
morphology of the glands themselves. More glandular
sites can potentially expand the production and
release of semiochemicals to the environment, and
enlarging the total area of the body covered with
a-glands should have an effect similar to increasing
the number of femoral or cloacal pores in species
that possess follicular glands. The factors driving the
evolution of glandular patches in tropidurines are
hypothesized to be, at least in part, the same as those
responsible for driving the number of femoral pores
in other lizard clades (e.g. substrate use, climatic
conditions and genetic factors; Pincheira-Donoso
et al., 2008; Iraeta et al., 2011; Baeckens et al.,
2015). Consequently, the signalling compensation
hypothesis of Baeckens et al. (2015), which proposes
that under harsh environmental conditions, species
might either increase investment (within-channel
hypothesis) or invest in additional or alternative
signalling channels (between-channel hypothesis)
that are likely to promote changes in the evolutionary
direction of the existing sensory channel (leading to
shifts in numbers, origins or losses of them), might
also be key to explain the evolution of a-glands.

Although it is noteworthy that the cases of secondary
loss of a-glands exclusively involved arboreal or
psammophilous lizards, but never rupicolous species,
which the majority of tropidurids are, these events do
not appear to have a clear association with changes in
their ecological habit. The same holds true regarding
the coloration of the flash marks that delineate
a-glands, which show a relatively well-structured
phylogenetic distribution. On the other hand, it is
possible that a positive correlation exists between the
number or area of the glandular patches and the degree
of territoriality and dominance displayed by male
tropidurines. It is also conceivable that a relationship
of some kind links the chemical nature of the glandular

products, rather than the morphology and area of the
glandular patches, to the environments occupied by
the lizards. And, of course, these factors might even
have interacted together to shape the evolution of
a-glands. Although the degree of territoriality and
dominance of males of most tropidurine species has
never been measured, the fact that in several species
that have mid-body patches of glandular scales, the
development of these glandular areas only occurs
in older, dominant males (Pinto et al., 2005; A. L.
G. Carvalho, pers. observ.), is interpreted as evidence
of a possible relationship between social parameters
and the evolution of a-glands. Nevertheless, the non-
observation of an apparent relationship between the
occurrence of the glands and the ecological habit of
the lizards does not mean that social behaviour is
to be interpreted beforehand as the most prominent
factor underlying the evolution of a-glands. Further
research targeting the contribution of extrinsic
(i.e. environmental, ecological) vs. intrinsic (i.e.
behavioural, social) factors to the morphological and
biochemical evolution of a-glands is not only needed
but deeply encouraged.

CONCLUSIONS

Tropidurines lack epidermal follicular glands and,
consequently, a-glands are the main potential source of
semiochemicals in this lizard group. Some similarities
regarding functional aspects of these epidermal gland
types are striking. First, both gland types show a
marked sexual dimorphism, being more developed in
males or even absent in females. Second, both appear
in a ventral position, indicating that the secretion is
likely passively deposited in the substrate. Although
the homology of epidermal glands has not been
investigated in depth yet, it is undisputable that under
the traditional view of ‘historical homology’, implying
descent with modification from an ‘archetype’ of a
common ancestor (Butler & Saidel, 2000), they should
not be treated as homologous at the level of all lizards
(Fig. 1). In turn, under the ‘deep homology’ view, which
considers the repeated use of highly conserved genetic
circuits in the development of anatomical features
that do not share homology in a strict historical
or developmental sense (Shubin et al., 1997), the
identity and relationships between epidermal gland
types can be approached more thoroughly in the
near future. Hence, to disentangle the evolutionary
and developmental origins of different epidermal
gland types, instead of just exploring the anatomical
development of epidermal glands, it would be salutary
to focus on the genetic machinery responsible for
function. If follicular epidermal glands indeed derive
from a primitive generation gland-type, common
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genetic machinery shared between them should be
then identified. A comprehensive investigation of this
issue in currently under way.
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Appendix S2. Molecular matrix (nexus format) used to reconstruct the phylogenetic relationships of tropidurids.
Appendix S3. Profile of the molecular dataset analysed (Table S1) and summary of the best-fit nucleotide
substitution models and partition schemes identified by PartitionFinder 2 (Table S2).
Appendix S4. Best molecular phylogenetic tree (newick format) inferred for tropidurids under maximum
likelihood. Nonparametric bootstrap values (1000 replicates) are associated to nodes.
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